電子微系統封裝中,傳統錫鉛Sn-Pb與無鉛化錫球在材料性質與製程參數上有相當明顯的差異,就以Sn-Ag/Sn-Ag-Cu之二元及三元合金來說,其熔點比Sn-Pb高出30℃,這些都依序會導致在塑性及潛變行為上很大的分歧。又IPC-SPVC-WP-006 (WHITE PAPER REPORT by the Lead-Free Technical Subcommittee of the IPC Solder Products Value Council) 所制定無鉛銲錫之溫度循環測試規範幾乎依循過去傳統含鉛銲錫之資訊。因此,欲將電子產品中移除含鉛(Pb)材料,需要找到適當無鉛合金來取代,可以肯定的,Sn-Ag/Sn-Ag-Cu合金將成為未來應用在IC封裝上之無鉛錫球的主流材料;而錫球黏著IC、組合於基板或PCB上受不同溫度循環測試所產生之塑-潛應變行為應將分別加以分析與探討。
因而本文將使用PBGA-388 (Plastic Ball Grid Array-388)封裝體配置三種無鉛錫球(96.5Sn-3.5Ag、95.5Sn-3.8Ag-0.7Cu及95.5Sn-3.9Ag-0.6Cu)分別在PCB上對溫度循環負載的效應;利用田口法之L16直交表配合升溫率、高溫恆溫溫度、低溫恆溫溫度、高溫恆溫時間及低溫恆溫時間等五個溫度負載參數,進行剪塑性與剪潛應變行為之有限元素分析,探討其非彈性(塑性+潛變)應變行為及疲勞壽命預測,以期找出對疲勞壽命預測會產生效應的重要因子。
其次,使用63Sn-37Pb錫鉛銲料及96.5Sn-3.5AG、95.5Sn-3.8Ag-0.7Cu兩種鉛銲料,在溫度循環負載作用下,分別配置三種不同PCB厚度尺寸,進一步探討對PBGA-388封裝體之非彈性熱機械行為的比較及對疲勞壽命預估的影響,期望能供給未來制定溫度循環測試更多的參考資訊。