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中文摘要 

 
近年來 IC 半導體為迎合「輕、薄、短、小、高功能」，不斷進行微型精密化晶片尺寸

越縮越小，功能上也不斷整合，在封裝尺寸不斷縮小以及高腳數 I/O 驅使下，便產生了

新式半導體封裝技術-BGA (Ball Grid Array)。 
在 BGA 製程中，迴焊為影響封裝品質最重要製程之一，迴焊過程中迴焊爐(reflow oven)

產生熱源，將錫球熔融後連接電子元件與 PCB 板，由於表面黏著技術涉及機器、材料、

工作環境等多重變因，所以如何藉由選擇適當的製程變數來提高封裝品質與降低成本已

成為業界急欲解決的問題。 
田口式實驗計劃法應用「直交表」進行實驗規劃，藉以減少實驗次數，此方法利用分

析參數變異對設計目標值之影響，並導入信號雜音比和變異數分析(Analysis of Variance, 
ANOVA)，判斷各因子效果對品質特性的影響程度，使得於實施最佳化設計時，除了滿

足限制條件外，同時可降低設計目標對設計參數變異的敏感性。類似地，實驗設計法

(DOE)則直接利用變異數分析找出影響製程的重要因子，並應用迴歸分析推演出反應曲

面方程式，最後再依據設計之限制條件找出最佳製程參數的組合。這些方法已經被廣泛

的利用在各種設計領域。然而當製程參數個數非常多且有較強之交互作用，參數過多或

製程雜訊較高時，這些方法常常無法或很難找到最佳與正確的製程參數組合。 
本計畫整合並擷取以上各方法之優點，運用田口式實驗計劃法之實驗規劃與類神經系

統抗雜訊的特性，再進一步結合 Sequential Quadratic Programming 找出最佳參數之組

合。最後，比較各方法之優劣。並藉由實驗證明本研究的正確性。 
 

關鍵詞：BGA; 類神經網路; 最佳化 
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Abstract 
 

Recently, IC industry not only needs to improve functions and performances of IC design 
but also require reducing the sizes of packages. With increasing demands on reducing the 
package dimensions and increasing numbers of I/O lead counts, a new package technique, 
Ball Grid Array (BGA), has been implemented. 

For BGA processes, reflow parameters controlled by reflow ovens, which generate heat 
sources to fuse the electronic components and PCB together via tin balls, are critical. Since 
the surface mount technology involves in controlling complicated parameters such as 
machines, materials and working environments, proper selections and controls of these 
variables are crucial for improving production qualities and reducing costs. 

The Taguchi method utilizes an orthogonal table to reduce the number of experiments and 
applies the signal-to-noise (S/N) ratio with analysis of variance (ANOVA) to identify crucial 
factors that have major impacts to the processes. Furthermore, by selecting a proper 
combination of parameters with a maximum signal-to-noise ratio, one can find an optimal 
setting that meets the design constraints and reduces the disturbances from the variations of 
controlled variables. Similarly, Design of Experiments approaches identify the most 
influential factors directly by ANOVA, and find response surface equations (RSE) via 
regression analysis. An optimal solution is then searched in RSE. Although these methods 
have been widely applied in various fields, they tend to fail when there are strong interactions 
for variables, too many parameters for the model or the noises reaches to some limits. 

This project integrated and selected the strong points of mentioned methods using Taguchi 
methods for experimental planning, utilizing the noise resistance properties from artificial 
neural networks, and combing with Sequential Quadratic Programming approach to identify 
an optimal setting for processes. A completed comparison of these approaches will be 
provided and validated through experiments. 
 
Keywords：BGA; Neural networks; Optimization 
 

 
 
 
 
 
 



Introduction 

Ball grid array (BGA) is one of surface-mount packaging methods having been widely 
applied in the electronics industry. The BGAs are attached to a PCB utilizing a reflow oven, 
which melts the solder balls that are already matched in position with their respective desired 
sites on the PCB before the process begins. After the reflow soldering cycle, the surface 
tension of the molten solder ball helps to keep the package aligned in its proper location on 
the board until the solder cools and solidifies. Thus, proper control of production parameters 
is crucial to prevent the solder balls from creating short circuits. 

During manufacturing process, the thermal profile could affect the quality of a solder 
joint.  Because popularity and increasing importance of reflow soldering processes, the 
reflow profiling has been extensively studied, for example, by Salam et al. (Salam et al., 
2004), Bigas and Cabruja (Bigas and Cabruja, 2006) Lee (Lee, 1999), Skidmore and Waiters 
(Skidmore and Waiters, 2000), Suganuna and Tamanaha (Suganuna and Tamanaha ,2001), etc.  
Mostly, a trial-and-error method was mostly utilized to identify a combination of the process 
parameters. 

To resolve this type of parameter optimization design problems, Choon and Corpuz 
(Choon and Corpuz, 1999) implemented DOE and response surface methods to optimize wire 
bonding process for PBGA package.  Yang and Lee (Yang and Lee, 2005) proposed a similar 
method to the problem of cracking of plastic ball grid array (PBGA) packages during the 
reflow soldering process. 

In this study, the planning of the experiment follows an orthogonal arrays table L9 setup 
(Taguchi, 1991).  An average shear force of solder spheres (balls) is selected as a quality 
target of the reflow soldering process.  After completing the training of an ANN, the SQP 
method is implemented to search for an optimal parameter setting that maximizes the shear 
force of solder balls under specific constraints of parameters. 

Reflow soldering 

The purpose of the reflow process is to melt the powder particles in the solder paste, wet 
the surfaces being joined together and then solidify the solder to create a strong metallurgical 
bond. The experiments were conducted in a computerized reflow oven-TSK8000 (Der Pan, 
2005). A PID micro-processor with solid state  relays and thermocouples provides a precise 
and stable temperature control during the process with ±2 oC of accuracy. 

Solder properties 
The chemical composition of the solder ball is a Sn-Ag-Cu alloy with 98.5% of Sn, 1.0% 

of Ag and 0.5% of Cu. The soak temperature, the ductility and the specific gravity of the 
solder are 216-225oC, 46% and 7.34, respectively. 
Reflow profiling 

A reflow profile (i.e., a thermal profile) is one of the key variables having significant 
influences on the product qualities and the yield.  Normally, there are four process zones for 
the conventional reflow procedure: the preheating cycle, the thermal soak stage, the reflow 
cycle and the cooling phase. 

 Since properly selecting an oven setting is critical to product qualities, profilers are 
adopted as diagnostic tools to help uncover the causes of poor yields and high rework rates. 
Profilers can also reveal any inappropriate oven settings or further warrant that the designed 
thermal profile is suitable to the assembly.  Hence, profilers are used to assure the accuracy 
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of the experiments. 

Experimental procedures and test results 
Experimental design 

62 spherical solder balls with 0.45mm in the diameter are required to attach onto a PCB 
surface.  Since the parameter setting of a reflow profiling relates to solder properties, product 
specifications and the equipment performance, etc., the soak time, the reflow time and the 
peak temperature were selected as three controllable parameters according to the 
recommendation from an operation manual of the Der Pan Electric Mechanical Industrial Co. 

Figure 1 illustrates a typical reflow profiling applied to the reflow soldering process for 
the PCB fabrications.  In Figure 1, the preheating rate and the cooling rate have been fixed to 
2 oC/sec and -1.5 oC/sec, respectively.  Furthermore, the experiments were conducted based 
on an orthogonal array L9 table arrangement with three controllable 3-level factors and one 
response variable. Table I lists the three controlled factors including the soak time (i.e., the 
factor “A” in sec) with solder temperature of 150 oC, the reflow time (the factor “B” in sec) 
with 220 oC of solder temperature and the peak temperature (the factor “C” in  oC). 

The selected response variable is the average of the 62 measured ball shear forces after 
the reflow soldering process.  Therefore, it is desirable to have a maximum value. 
Ball shear tests of solder spheres 

The ball shear test was performed according to the Joint Electron Device Engineering 
Council (JEDEC) Test Method B117 (JEDEC, 2000) using a Instron 5548 machine with a 
cross-head speed of 300 μm/s at a shear height of 60μm above the module surface. The 
recorded amplitude of solder sphere shear forces is an average value of the 62 measured 
points on the PCB surface by applying forces in a horizontal direction. The measured results 
are listed in Table II. 

 
Optimization processes 

Figure 2 gives the processes of finding an optimal setting for the reflow soldering 
process.  Details of each step are shown at the following subsections.  
Identify the objective of the problem 

The objective is to identify an optimal setting to maximize an average shear force of 
solder balls as well as minimize the manufacturing cycle time.  An integrated algorithm with 
an ANN and the SQP method is proposed.  An ANN is served as an effective modeling tool 
to map the relationship between the inputs and the outputs.  The ANN learns to approximate 
the functions through a training process.  During the training stage, the training data are 
presented to an ANN and the network continues to adjust its weights and biases to match the 
known targets until a performance index reaches a preset threshold value.  A 
multi-layer-feed-forward neural network (MLFN) is selected for its simple architecture, 
flexibility, and being capable of approximating any complicated functions with a finite 
number of discontinuities by just adding additional neurons or more hidden layers.  A typical 
MLFN architecture with R input neurons, P hidden neurons, and M output neurons is shown 
in Figure 3.  In Figure 3, Wi,j(k) is the k-th set of weights and biases connecting an ANN 
from node j to node i; Σ performs a summation operation and also maps the summation values 
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to a range of [-1,1] by a tan-sigmoid function; h is a linear transfer function that transfer the 
network values from the previous layer to any values (MathWorks, 1997). 
Choose factors and levels for ANN training 

Referring to an operation manual of the Der Pan Electric Mechanical Industrial Co., we 
have selected three controllable factors, which are the soak time, the reflow time and the peak 
temperature.  Each factor has three levels to cover the domain of interest.  An average shear 
force of solder balls is the selected output.  In Figure 4, the soak time, the reflow time and 
the peak temperature are fed into the three input neurons and then the output neuron gives the 
values of the average shear force.      
Train ANN and validate ANN training results 

Nine sets of data conforming to Taguchi L9 design have been procured and the inputs 
data have been scaled between -1 and 1 to improve the training efficiency (MathWorks, 1997).   
During the training, one of the known problems is called overfitting.  An overfitting trained 
ANN has very poor generalization capability when new data are presented to it. To improve 
the generalization, a regularization scheme is proposed by modifying a performance index, 
which is normally defined as a mean square error shown as follows, 
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where N is the total number of data points; Ti , Yi , and Ei are the target values, the ANN 
outputs during training, and the differences of Ti and Yi, respectively.  By adding the weights 
and the biases into a performance index shown on the equation (1), ANN generalization 
capability can be greatly improved.  A modified performance index is written in the 
following form,  

MSWMSEMSE ∗−+∗= )1(mod ββ                                            (2) 
MSW is defined as follows, β  where is a performance ratio and 

∑=
n

wMSW 2                                        
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where n is the total numbers of weights and biases; wj represents the weights and the biases.  

tion and obtain an optimum setting 
During the training, the values feeding into the ANN input neurons have been limited to 

Applying this new performance index will force the network to have smaller values of 
weights and biases, the network response will be smoother and less likely to overfit.  
Nevertheless, it is very difficult to determine an optimal regularization parameter.  Hence, 
Mackay et al. (Mackay, 1992; Foresse and Hagan, 1997) performed Bayesian regularization to 
automate the selection of the optimal regularization parameter.  After completing the training, 
two additional data that have not been seen by the ANN are utilized to validate the training 
results.  If the validation is satisfactory, the ANN will be used to find an optimal parameter 
setting stated in the following section. 
Define an optimization objective func
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the domain of interest; thus, once the ANN has been properly trained, it gives the reasonable 
outp

 

subject to  

                                               (4) 

where x is the vector of design p

uts when presented with the inputs falling within the training range even the data have 
never been seen by the network.   Namely, the trained ANN performs well on interpolation. 
On the other hand, if the data presented to the ANN is outside the region of training, 
generalization capability of the ANN degrades, i.e. the ANN does poorly on extrapolation.  
Hence, a feasible optimal solution, which reaches a maximized average shear force, shall be 
constrained in the domain that has been used to train the ANN.  For this type of constrained 
optimization cases, a general approach is to transform the problem into an easier sub-problem 
that can be solved and used as the basis of an iterative process.  A general problem 
description is stated as follows (Fletcher, 1981) 
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The first equation in the equation (5) describes a canceling between the objective 
function and the gradients of the active constraints at the solution point, x*.  To cancel the 
grad

values evaluated at x; xl is the lower bound pper bound, and me is the number 
of the equality constraints.  If the Kuhn-Tucker (KT) equations are applied, the equation (4) 
can be restated as 
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ients, Lagrange multipliers ( mii ,,1, L=λ ) are used to balance the deviations in magnitude 
of the objective function and the constraints gradients.  Since only active constraints are 
included in the canceling operation, the constraints that are not active must not be included in 
this operation and so are given Lagrange multipliers equal to zero. 

The solution of the KT equations is the basis of many nonlinear programming algorithms, 
which attempt to solve the Lagrange multipliers directly.  These methods are referred to as 
the SQP methods since a Quadratic Program (QP) sub-problem is solved at each major 
iteration.  An overview of SQP can be found in Fletcher (Fletcher, 1981).  During the 
optimization, the trained ANN provides the function values to the SQP algorithm. 

Because the objective of this study is to identify an optimal setting to maximize the 
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average shear forces of solder balls as well as minimize the manufacturing cycle time, the 
objective function, f(x), can be defined as follows (Myers and Montgomery, 2002), 
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where the SFmax an
data for the average shear force. “D” is a desirability function (Myers and Montgomery, 

 required to reassure the ANN training quality and validate 
ation runs of the optimal setting yield good results, the 

prop

ental factors and the factor levels, Table 2 shows the 
experimental results based on the

e ANN has been trained by the 
e errors between the experimental data and the ANN training outputs 

defin

ental data and the ANN predicted values, 
one 

e adequacy of an ANN model shall be inspected to confirm that the model has 
xperimental data before the ANN model can be 

ate of the 

d the SFmin are the maximum and the minimum values of the experimental 

2002), and the objective is to choose an optimal setting to maximize the desirability function 
“D” and minimize the cycle time. 
Conduct confirmation experiments 

Confirmation experiments are
the optimal setting.  Hence, if confirm

osed algorithm is validated. 

Results and discussion 
As Table 1 gives the experim

 orthogonal array L9 design. 
 
ANN training results 

Table 3 is the results of the average shear force after th
experimental data.  Th

ed as the residuals are also shown in the table. 
Furthermore, by investigating the correlation coefficients, R2, which measures the 

strength of a linear relationship between the experim
obtain the value of R2 to be 0.984 after the ANN training.  There are about 98.4% of all 

of the variance in the experimental data can be accounted for by the predicted outputs of the 
ANN. 
ANN model adequacy check 

Th
extracted all relevant information from the e
utilized by the SQP algorithm for finding an optimal setting. The primary diagnostic tool is 
the residual analysis (Montgomery, 1997). The residuals are defined as the differences 
between the actual and predicted values for each point in the design. The residual results for 
the shear forces are listed in Table III. If a model is adequate, the distribution of residuals 
should be normally distributed (Montgomery, 1997). Minitab® (Minitab, 2000) program is 
used to perform the normality test. For the normality test, the hypotheses are listed as follows, 
1. Null hypothesis: the residual data follows a normal distribution 
2. Alternative hypothesis: the residual data does not follow a normal distribution 

In Figure 5, the vertical axis has a probability scale and the horizontal axis with a data 
scale. A least-square line is then fitted to the plotted points. The line forms an estim
cumulative distribution function for the population from which data are drawn. 

As a “P-Value” (shown on the lower-right-hand side of the plot) is smaller than 0.05, it 
will be classified as “significant”, and the null hypothesis needs to be rejected (Montgomery, 
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1997

ts to the reflow soldering process and the results are shown in Table 4 after 
remo

d model is significant and there is only a 0.55% chance that the “Model F value” 
coul

. 1 of Table 5) is conducted with soak time of 61 seconds, 
C.  The second confirmation run 

(No.

).  In view of the fact that the “P-value” shown in Figure 5 is 0.258, which are larger 
than 0.05, the residuals follow a normal distribution; hence, the ANN predictive model is 
adequacy and extracts all available information from the experimental data. The rests of 
information defined as residuals can be considered as errors from performing the experiments. 
ANOVA results 

The analysis of variance (ANOVA) was conducted to identify the factors that have 
significant impac

ving any insignificant terms. A “Model F value” is calculated from a model mean square 
divided by a residual mean square. It is a test of comparing a model variance with a residual 
variance. If the variances are close to the same, the ratio will be close to one and it is less 
likely that any of the factors have a significant effect on the response. As for a “Model P 
value”, if the “Model P value” is very small (less than 0.05) then the terms in the model have 
a significant effect on the response (Montgomery, 1997). Similarly, an “F value” on any 
individual factor terms is calculated from a term mean square divided by a residual mean 
square. It is a test that compares a term variance with a residual variance. If the variances are 
close to the same, the ratio will be close to one and it is less likely that the term has a 
significant effect on the response.  Furthermore, if a “P value” of any model terms is very 
small (less than 0.05), the individual terms in the model have a significant effect on the 
response. 

In Table IV, a “Model F value” of 42.46 with a “Model P value” of 0.0055 implies that 
the selecte

d occur due to the noise.  The “P value” for the model term “B” (the reflow time in sec) 
is 0.0162 and 0.0087 for the model term “B2” indicating that both the model terms “B” and 
“B2” are significant.  There is only one interaction term “BC” having significant influence on 
the average shear force.  In addition, a “P value” for the model term “C2” is 0.033, which is 
less than 0.05, signifying that the model term “C2” is also significant.  According to the 
hierarchy principle in model-building (Montgomery, 1997), the model term “C” (the peak 
temperature in oC) shall be also included in the regression model even the “P value” of the 
model term “C” is more than 0.05. 
Confirmation tests for the ANN and an optimal setting 

The first confirmation run (No
reflow time of 61 seconds and peak temperature of 246 O

 2 of Table 5) is performed with soak rime of 140 seconds, reflow time of 30 seconds and 
peak temperature of 250 OC. Finally, an optimal setting (No. 3 of Table 5), soak rime of 75 
seconds, reflow time of 82 seconds and peak temperature of 230 OC, is identified from the 
ANN predictive model and the SQP method by maximizing the desirability function “D” in 
the equation (6) and minimize the cycle time.  With this optimal setting, one can get 7.53 N 
of the average shear force with a desirability function value of 0.98 according to the equation 
(6).  By comparing the optimal setting with an average shear force of 7.53 N to the best shear 
force results of 7.55 N in a L9 orthogonal array table shown in No. 7 run of Table 2, the 
combined cycle time, which is the addition of the soak time and the reflow time, is 157 
seconds (from 75+82=157) for the optimal run vs. a non-optimal run of 170 seconds (from 
140+30=170).  The found optimal setting cuts the cycle time by 7.65% with a tradeoff of a 
smaller shear force but with a lower peak temperature setting, which translates to a reduced 
energy cost as the optimal setting applied to the reflow soldering process.  By investigating 
the correlation coefficients between the experimental data and the ANN predicted values, one 
can get 0.933 for the average shear force, which indicates that there are high correlations 
between the experimental data and the ANN prediction outputs for the confirmation runs. 
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This study investigated the ing process using a hybrid 

an be utilized successfully to predict the shear force under different 

 

Conclusions and discussion 
optimization of the reflow solder

method that combines the ANN and the SQP method.  Nine experimental runs based on the 
orthogonal arrays table were performed to reduce the number of experiments. The average 
sustained shear force of solder spheres is adopted as a quality target. According to the 
experimental data and the analysis of variance (ANOVA), the results are summarized as 
follows. 

1. The ANN c
reflow soldering conditions after being properly trained. 

2. In order to achieve a maximum shear force, the optimal parameter settings for the 
reflow soldering process is with soak time of  75 sec, reflow time of 82 sec and  

3. This study provides an algorithm that integrates a black-box modeling approach (i.e., 
the ANN predictive model) and the SQP method to resolve an optimization problem. 
This algorithm offered an effective and systematic way to identify an optimal setting 
of the reflow soldering process. 

4. Normality analysis on residuals of the ANN model ensures that the models have 
extracted all applicable information from the experimental data.  It further validates 
the fidelity of the ANN model and the feasibility of the proposed approach. 
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Fig. 1 A reflow profile curve  
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 2. Flowchart of finding an optimal parameter setting  
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Fig. 3. A typical MLFN architecture with R input 
neurons, P hidden neurons, and M output 
neurons 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  Architecture of the MLFN with one output neuron of the average 
shear forces 
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Figure 5 A normality plot for residuals of shear forces 
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 Table 1 Experimental factors and factor levels 
 

 Experimental factors Levels of 
experimental 

factors A/sec B/sec 
 

C/ oC  
1 60 30 230  
2 100 60 240  
3 140 90 250  

 

 

 

 

 L9 A B C Shear forces (N) 
 1 60 30 230 6.92  
 2 60 60 240 7.26  

3  60 90 250 6.64  
 

4 100 30 240 7.13  
 

5 100 60 250 7.38  
 

6 100 90 230 7.44  
 

7 140 30 250 7.55  
 

8 140 60 230 7.39  
 

9 140 90 240 6.78  

Table 2 Orthogonal array L9 (34) of the experimental runs and results 

Table 3 Residual results shear forces 

Exp. No. A B C 
Actual Shear 

Force (N) 

Pred. Shear 

Force (N) 
Residuals 

 

 

 

 

 

 
1 60 30 230 6.92  6.87  0.05   
2 60 60 240 7.26  7.26  0.00   
3 60 90 250 6.64  6.63  0.01   
4 100 30 240 7.13  7.20  -0.07   
5 100 60 250 7.38  7.38  0.00   

6 100 90 230 7.44  7.45  -0.01   

7 140 30 250 7.55  7.45  0.10   

8 140 60 230 7.39  7.49  -0.10   

 9 140 90 240 6.78  6.78  0.00  
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Table 4 ANOVA results for shear forces 

Source Sum of squares 
Degree of 
freedom 

Mean square F value P value 

Model 0.8035  5 0.16069  42.46  0.0055  
B 0.0913  1 0.09127  24.12  0.0162  
C 0.0054  1 0.00540  1.43  0.3181  
B2 0.1422  1 0.14222  37.58  0.0087  
C2 0.0534  1 0.05336  14.10  0.0330  
BC 0.5112  1 0.51123  135.09  0.0014  

Residual 0.0114  3 0.00378  - - 
Total 0.8148  8 - - - 

 

 

 
Table 5 Confirmation runs with one optimal setting with maximizing shear f

Exp. No. A B C 
Actual 
shear 

force (N)

Pred. 
shear 

force (N) 
Error (%) 

orces  

 

1 61 61 246 7.35  7.40  0.64  
2 140 30 250 7.37  7.45  0.97  
3 75 82 230 7.53  7.50  0.40  
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