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Abstract

Recently, IC industry not only needs to improve functions and performances of IC design
but also require reducing the sizes of packages. With increasing demands on reducing the
package dimensions and increasing numbers of 1/O lead counts, a new package technique,
Ball Grid Array (BGA), has been implemented.

For BGA processes, reflow parameters controlled by reflow ovens, which generate heat
sources to fuse the electronic components and PCB together via tin balls, are critical. Since
the surface mount technology involves in controlling complicated parameters such as
machines, materials and working environments, proper selections and controls of these
variables are crucial for improving production qualities and reducing costs.

The Taguchi method utilizes an orthogonal table to reduce the number of experiments and
applies the signal-to-noise (S/N) ratio with analysis of variance (ANOVA) to identify crucial
factors that have major impacts to the processes. Furthermore, by selecting a proper
combination of parameters with a maximum signal-to-noise ratio, one can find an optimal
setting that meets the design constraints and reduces the disturbances from the variations of
controlled variables. Similarly, Design of Experiments approaches identify the most
influential factors directly by ANOVA, and find response surface equations (RSE) via
regression analysis. An optimal solution is then searched in RSE. Although these methods
have been widely applied in various fields, they tend to fail when there are strong interactions
for variables, too many parameters for the model or the noises reaches to some limits.

This project integrated and selected the strong points of mentioned methods using Taguchi
methods for experimental planning, utilizing the noise resistance properties from artificial
neural networks, and combing with Sequential Quadratic Programming approach to identify
an optimal setting for processes. A completed comparison of these approaches will be
provided and validated through experiments.

Keywords : BGA,; Neural networks; Optimization



Introduction

Ball grid array (BGA) is one of surface-mount packaging methods having been widely
applied in the electronics industry. The BGAs are attached to a PCB utilizing a reflow oven,
which melts the solder balls that are already matched in position with their respective desired
sites on the PCB before the process begins. After the reflow soldering cycle, the surface
tension of the molten solder ball helps to keep the package aligned in its proper location on
the board until the solder cools and solidifies. Thus, proper control of production parameters
is crucial to prevent the solder balls from creating short circuits.

During manufacturing process, the thermal profile could affect the quality of a solder
joint. Because popularity and increasing importance of reflow soldering processes, the
reflow profiling has been extensively studied, for example, by Salam et al. (Salam et al.,
2004), Bigas and Cabruja (Bigas and Cabruja, 2006) Lee (Lee, 1999), Skidmore and Waiters
(Skidmore and Waiters, 2000), Suganuna and Tamanaha (Suganuna and Tamanaha ,2001), etc.
Mostly, a trial-and-error method was mostly utilized to identify a combination of the process
parameters.

To resolve this type of parameter optimization design problems, Choon and Corpuz
(Choon and Corpuz, 1999) implemented DOE and response surface methods to optimize wire
bonding process for PBGA package. Yang and Lee (Yang and Lee, 2005) proposed a similar
method to the problem of cracking of plastic ball grid array (PBGA) packages during the
reflow soldering process.

In this study, the planning of the experiment follows an orthogonal arrays table Lg setup
(Taguchi, 1991). An average shear force of solder spheres (balls) is selected as a quality
target of the reflow soldering process. After completing the training of an ANN, the SQP
method is implemented to search for an optimal parameter setting that maximizes the shear
force of solder balls under specific constraints of parameters.

Reflow soldering

The purpose of the reflow process is to melt the powder particles in the solder paste, wet
the surfaces being joined together and then solidify the solder to create a strong metallurgical
bond. The experiments were conducted in a computerized reflow oven-TSK8000 (Der Pan,
2005). A PID micro-processor with solid state relays and thermocouples provides a precise
and stable temperature control during the process with +2 oC of accuracy.

Solder properties

The chemical composition of the solder ball is a Sn-Ag-Cu alloy with 98.5% of Sn, 1.0%
of Ag and 0.5% of Cu. The soak temperature, the ductility and the specific gravity of the
solder are 216-225°C, 46% and 7.34, respectively.
Reflow profiling

A reflow profile (i.e., a thermal profile) is one of the key variables having significant
influences on the product qualities and the yield. Normally, there are four process zones for
the conventional reflow procedure: the preheating cycle, the thermal soak stage, the reflow
cycle and the cooling phase.

Since properly selecting an oven setting is critical to product qualities, profilers are
adopted as diagnostic tools to help uncover the causes of poor yields and high rework rates.
Profilers can also reveal any inappropriate oven settings or further warrant that the designed
thermal profile is suitable to the assembly. Hence, profilers are used to assure the accuracy
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of the experiments.

Experimental procedures and test results

Experimental design

62 spherical solder balls with 0.45mm in the diameter are required to attach onto a PCB
surface. Since the parameter setting of a reflow profiling relates to solder properties, product
specifications and the equipment performance, etc., the soak time, the reflow time and the
peak temperature were selected as three controllable parameters according to the
recommendation from an operation manual of the Der Pan Electric Mechanical Industrial Co.

Figure 1 illustrates a typical reflow profiling applied to the reflow soldering process for
the PCB fabrications. In Figure 1, the preheating rate and the cooling rate have been fixed to
2°C/sec and -1.5°C/sec, respectively. Furthermore, the experiments were conducted based
on an orthogonal array Lg table arrangement with three controllable 3-level factors and one
response variable. Table 1 lists the three controlled factors including the soak time (i.e., the
factor “A” in sec) with solder temperature of 150°C, the reflow time (the factor “B” in sec)
with 220 °C of solder temperature and the peak temperature (the factor “C” in  °C).

The selected response variable is the average of the 62 measured ball shear forces after
the reflow soldering process. Therefore, it is desirable to have a maximum value.
Ball shear tests of solder spheres

The ball shear test was performed according to the Joint Electron Device Engineering
Council (JEDEC) Test Method B117 (JEDEC, 2000) using a Instron 5548 machine with a

cross-head speed of 300 2 m/s at a shear height of 60 z m above the module surface. The
recorded amplitude of solder sphere shear forces is an average value of the 62 measured
points on the PCB surface by applying forces in a horizontal direction. The measured results
are listed in Table II.

Optimization processes
Figure 2 gives the processes of finding an optimal setting for the reflow soldering
process. Details of each step are shown at the following subsections.
Identify the objective of the problem

The objective is to identify an optimal setting to maximize an average shear force of
solder balls as well as minimize the manufacturing cycle time. An integrated algorithm with
an ANN and the SQP method is proposed. An ANN is served as an effective modeling tool
to map the relationship between the inputs and the outputs. The ANN learns to approximate
the functions through a training process. During the training stage, the training data are
presented to an ANN and the network continues to adjust its weights and biases to match the
known targets until a performance index reaches a preset threshold value. A
multi-layer-feed-forward neural network (MLFN) is selected for its simple architecture,
flexibility, and being capable of approximating any complicated functions with a finite
number of discontinuities by just adding additional neurons or more hidden layers. A typical
MLFN architecture with R input neurons, P hidden neurons, and M output neurons is shown
in Figure 3. In Figure 3, W;;(k) is the k-th set of weights and biases connecting an ANN
from node j to node i; X performs a summation operation and also maps the summation values
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to a range of [-1,1] by a tan-sigmoid function; h is a linear transfer function that transfer the

network values from the previous layer to any values (MathWorks, 1997).
Choose factors and levels for ANN training
Referring to an operation manual of the Der Pan Electric Mechanical Industrial Co., we

have selected three controllable factors, which are the soak time, the reflow time and the peak
temperature. Each factor has three levels to cover the domain of interest. An average shear
force of solder balls is the selected output. In Figure 4, the soak time, the reflow time and
the peak temperature are fed into the three input neurons and then the output neuron gives the

values of the average shear force.
Train ANN and validate ANN training results
Nine sets of data conforming to Taguchi Lg design have been procured and the inputs

data have been scaled between -1 and 1 to improve the training efficiency (MathWorks, 1997).
During the training, one of the known problems is called overfitting. An overfitting trained
ANN has very poor generalization capability when new data are presented to it. To improve
the generalization, a regularization scheme is proposed by modifying a performance index,
which is normally defined as a mean square error shown as follows,

1< 2_iN IRVAY
|\/|SE=WiZ:l“Ei _N;(Ti Y,) 1)

where N is the total number of data points; T;, Y; , and E; are the target values, the ANN
outputs during training, and the differences of T; and Y;, respectively. By adding the weights
and the biases into a performance index shown on the equation (1), ANN generalization
capability can be greatly improved. A modified performance index is written in the
following form,
MSE, , = 8*MSE + (1- ) * MSW (2)
where £ is a performance ratio and MSW is defined as follows,
MSW =1iwj2 (3)
n4=
where n is the total numbers of weights and biases; w; represents the weights and the biases.
Applying this new performance index will force the network to have smaller values of
weights and biases, the network response will be smoother and less likely to overfit.
Nevertheless, it is very difficult to determine an optimal regularization parameter. Hence,
Mackay et al. (Mackay, 1992; Foresse and Hagan, 1997) performed Bayesian regularization to
automate the selection of the optimal regularization parameter.  After completing the training,
two additional data that have not been seen by the ANN are utilized to validate the training
results. If the validation is satisfactory, the ANN will be used to find an optimal parameter

setting stated in the following section.
Define an optimization objective function and obtain an optimum setting
During the training, the values feeding into the ANN input neurons have been limited to



the domain of interest; thus, once the ANN has been properly trained, it gives the reasonable
outputs when presented with the inputs falling within the training range even the data have
never been seen by the network. ~ Namely, the trained ANN performs well on interpolation.
On the other hand, if the data presented to the ANN is outside the region of training,
generalization capability of the ANN degrades, i.e. the ANN does poorly on extrapolation.
Hence, a feasible optimal solution, which reaches a maximized average shear force, shall be
constrained in the domain that has been used to train the ANN. For this type of constrained
optimization cases, a general approach is to transform the problem into an easier sub-problem
that can be solved and used as the basis of an iterative process. A general problem
description is stated as follows (Fletcher, 1981)

min f(X)

xeR"

subject to

C.(x)=0 i=1---,m,

C.(x)<0 i=m,+1---,m 4
X, <X <X,

where X is the vector of design parameters, x={x;,x5,---,x,}, f(X) is the objective function that
yields a scalar value; the vector function Cij(x) gives the equality and inequality constraints
values evaluated at x; x; is the lower bound of x, x, is the upper bound, and me is the number
of the equality constraints. If the Kuhn-Tucker (KT) equations are applied, the equation (4)
can be restated as

F(x)+ Y4 VC, (x) =0

i=1
VC,(x)=0 i=1---,m, (5)
2 >0 i=m,+1---,m

The first equation in the equation (5) describes a canceling between the objective
function and the gradients of the active constraints at the solution point, xX. To cancel the
gradients, Lagrange multipliers (4,i=1,--,m) are used to balance the deviations in magnitude
of the objective function and the constraints gradients. Since only active constraints are
included in the canceling operation, the constraints that are not active must not be included in
this operation and so are given Lagrange multipliers equal to zero.

The solution of the KT equations is the basis of many nonlinear programming algorithms,
which attempt to solve the Lagrange multipliers directly. These methods are referred to as
the SQP methods since a Quadratic Program (QP) sub-problem is solved at each major
iteration. An overview of SQP can be found in Fletcher (Fletcher, 1981). During the
optimization, the trained ANN provides the function values to the SQP algorithm.

Because the objective of this study is to identify an optimal setting to maximize the

4



average shear forces of solder balls as well as minimize the manufacturing cycle time, the
objective function, f(x), can be defined as follows (Myers and Montgomery, 2002),

_ SF-SF.,

"~ SF. —SF.. (6)
f(x)=-D
where the SFyax and the SFy,i are the maximum and the minimum values of the experimental
data for the average shear force. “D” is a desirability function (Myers and Montgomery,
2002), and the objective is to choose an optimal setting to maximize the desirability function

“D” and minimize the cycle time.
Conduct confirmation experiments
Confirmation experiments are required to reassure the ANN training quality and validate

the optimal setting. Hence, if confirmation runs of the optimal setting yield good results, the
proposed algorithm is validated.

Results and discussion
As Table 1 gives the experimental factors and the factor levels, Table 2 shows the
experimental results based on the orthogonal array Lg design.

ANN training results
Table 3 is the results of the average shear force after the ANN has been trained by the

experimental data. The errors between the experimental data and the ANN training outputs
defined as the residuals are also shown in the table.

Furthermore, by investigating the correlation coefficients, R?, which measures the
strength of a linear relationship between the experimental data and the ANN predicted values,
one obtain the value of R? to be 0.984 after the ANN training. There are about 98.4% of all
of the variance in the experimental data can be accounted for by the predicted outputs of the

ANN.

ANN model adequacy check

The adequacy of an ANN model shall be inspected to confirm that the model has
extracted all relevant information from the experimental data before the ANN model can be
utilized by the SQP algorithm for finding an optimal setting. The primary diagnostic tool is
the residual analysis (Montgomery, 1997). The residuals are defined as the differences
between the actual and predicted values for each point in the design. The residual results for
the shear forces are listed in Table Ill. If a model is adequate, the distribution of residuals
should be normally distributed (Montgomery, 1997). Minitab® (Minitab, 2000) program is
used to perform the normality test. For the normality test, the hypotheses are listed as follows,
1. Null hypothesis: the residual data follows a normal distribution
2. Alternative hypothesis: the residual data does not follow a normal distribution

In Figure 5, the vertical axis has a probability scale and the horizontal axis with a data
scale. A least-square line is then fitted to the plotted points. The line forms an estimate of the
cumulative distribution function for the population from which data are drawn.

As a “P-Value” (shown on the lower-right-hand side of the plot) is smaller than 0.05, it
will be classified as “significant”, and the null hypothesis needs to be rejected (Montgomery,



1997). In view of the fact that the “P-value” shown in Figure 5 is 0.258, which are larger
than 0.05, the residuals follow a normal distribution; hence, the ANN predictive model is
adequacy and extracts all available information from the experimental data. The rests of
information defined as residuals can be considered as errors from performing the experiments.
ANOVA results

The analysis of variance (ANOVA) was conducted to identify the factors that have
significant impacts to the reflow soldering process and the results are shown in Table 4 after
removing any insignificant terms. A “Model F value” is calculated from a model mean square
divided by a residual mean square. It is a test of comparing a model variance with a residual
variance. If the variances are close to the same, the ratio will be close to one and it is less
likely that any of the factors have a significant effect on the response. As for a “Model P
value”, if the “Model P value” is very small (less than 0.05) then the terms in the model have
a significant effect on the response (Montgomery, 1997). Similarly, an “F value” on any
individual factor terms is calculated from a term mean square divided by a residual mean
square. It is a test that compares a term variance with a residual variance. If the variances are
close to the same, the ratio will be close to one and it is less likely that the term has a
significant effect on the response. Furthermore, if a “P value” of any model terms is very
small (less than 0.05), the individual terms in the model have a significant effect on the
response.

In Table 1V, a “Model F value” of 42.46 with a “Model P value” of 0.0055 implies that
the selected model is significant and there is only a 0.55% chance that the “Model F value”
could occur due to the noise. The “P value” for the model term “B” (the reflow time in sec)
is 0.0162 and 0.0087 for the model term “B*” indicating that both the model terms “B” and
“B2” are significant. There is only one interaction term “BC” having significant influence on
the average shear force. In addition, a “P value” for the model term “C?” is 0.033, which is
less than 0.05, signifying that the model term “C?” is also significant. According to the
hierarchy principle in model-building (Montgomery, 1997), the model term “C” (the peak
temperature in °C) shall be also included in the regression model even the “P value” of the
model term “C” is more than 0.05.

Confirmation tests for the ANN and an optimal setting

The first confirmation run (No. 1 of Table 5) is conducted with soak time of 61 seconds,
reflow time of 61 seconds and peak temperature of 246 °C. The second confirmation run
(No. 2 of Table 5) is performed with soak rime of 140 seconds, reflow time of 30 seconds and
peak temperature of 250 °C. Finally, an optimal setting (No. 3 of Table 5), soak rime of 75
seconds, reflow time of 82 seconds and peak temperature of 230 °C, is identified from the
ANN predictive model and the SQP method by maximizing the desirability function “D” in
the equation (6) and minimize the cycle time. With this optimal setting, one can get 7.53 N
of the average shear force with a desirability function value of 0.98 according to the equation
(6). By comparing the optimal setting with an average shear force of 7.53 N to the best shear
force results of 7.55 N in a Ly orthogonal array table shown in No. 7 run of Table 2, the
combined cycle time, which is the addition of the soak time and the reflow time, is 157
seconds (from 75+82=157) for the optimal run vs. a non-optimal run of 170 seconds (from
140+30=170). The found optimal setting cuts the cycle time by 7.65% with a tradeoff of a
smaller shear force but with a lower peak temperature setting, which translates to a reduced
energy cost as the optimal setting applied to the reflow soldering process. By investigating
the correlation coefficients between the experimental data and the ANN predicted values, one
can get 0.933 for the average shear force, which indicates that there are high correlations
between the experimental data and the ANN prediction outputs for the confirmation runs.



Conclusions and discussion

This study investigated the optimization of the reflow soldering process using a hybrid
method that combines the ANN and the SQP method. Nine experimental runs based on the
orthogonal arrays table were performed to reduce the number of experiments. The average
sustained shear force of solder spheres is adopted as a quality target. According to the
experimental data and the analysis of variance (ANOVA), the results are summarized as

follows.
1.

2.

The ANN can be utilized successfully to predict the shear force under different
reflow soldering conditions after being properly trained.

In order to achieve a maximum shear force, the optimal parameter settings for the
reflow soldering process is with soak time of 75 sec, reflow time of 82 sec and

This study provides an algorithm that integrates a black-box modeling approach (i.e.,
the ANN predictive model) and the SQP method to resolve an optimization problem.
This algorithm offered an effective and systematic way to identify an optimal setting
of the reflow soldering process.

Normality analysis on residuals of the ANN model ensures that the models have
extracted all applicable information from the experimental data. It further validates
the fidelity of the ANN model and the feasibility of the proposed approach.
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Fig. 3. Atypical MLFN architecture with R input
neurons, P hidden neurons, and M output
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Table 1 Experimental factors and factor levels

Lev_els of Experimental factors
experimental
factors Alsec B/sec c/°C
1 60 30 230
2 100 60 240
3 140 90 250

Table 2 Orthogonal array Lo (3%) of the experimental runs and results

Lo A B C Shear forces (N)

1 60 30 230 6.92

2 60 60 240 7.26

3 60 90 250 6.64

4 100 30 240 7.13

5 100 60 250 7.38

6 100 90 230 7.44

7 140 30 250 7.55

8 140 60 230 7.39

9 140 90 240 6.78

Table 3 Residual results shear forces
Exp. No. A B c Actual Shear | Pred. Shear Residuals
Force (N) Force (N)

1 60 30 230 6.92 6.87 0.05
2 60 60 240 7.26 7.26 0.00
3 60 90 250 6.64 6.63 0.01
4 100 30 240 7.13 7.20 -0.07
5 100 60 250 7.38 7.38 0.00
6 100 90 230 7.44 7.45 -0.01
7 140 30 250 7.55 7.45 0.10
8 140 60 230 7.39 7.49 -0.10
9 140 90 240 6.78 6.78 0.00
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Table 4 ANOVA results for shear forces

Degree of
Source | Sum of squares Mean square F value P value
freedom
Model 0.8035 5 0.16069 42.46 0.0055
B 0.0913 1 0.09127 24.12 0.0162
C 0.0054 1 0.00540 1.43 0.3181
B? 0.1422 1 0.14222 37.58 0.0087
C? 0.0534 1 0.05336 14.10 0.0330
BC 0.5112 1 0.51123 135.09 0.0014
Residual 0.0114 3 0.00378 - -
Total 0.8148 8 - - -

Table 5 Confirmation runs with one optimal setting with maximizing shear forces

Actual Pred.
Exp. No. A B C shear shear | Error (%)
force (N) [ force (N)
1 61 61 246 7.35 7.40 0.64
2 140 30 250 7.37 7.45 0.97
3 75 82 230 7.53 7.50 0.40
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