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快速及可擴充之多 TCAM 封包分類器於大量法則表格搜尋 

摘要 

由於網際網路傳輸資料量正以爆炸式的速度發展，下一代寬頻交換器被設計用以

提供傳輸速度可以達到 2.5Gbps、10Gbps 甚至高達 40Gbps。對於傳送有線速度之深

層封包檢查，並適合多種 QoS 需求目標，使得封包分類已成為下一代高速交換技術

之發展瓶頸。三元內容可尋址記憶體(TCAM)  提供高速平行化之比較運算，並且適

合開發出硬體式封包分類器。不過，超高密度之單一 TCAM 並不能夠做為解決方案，

因為其並不具備可擴充及夠快速來填充大量封包分類法則。 

為了提供可擴充與深層封包檢查，本研究將提出具有多層次 TCAM 之管線化及

平行化系統架構，以取得對 IPv6 及多種應用之有線速度封包分類。為了達到管線化

與平行化處理之目標，本研究將提出一種可以解決模糊情況案例，以及一種壓縮方法

來降低 TCAMs 的空間要求。應用以上機制，本研究也將提出一種能夠以超高速度處

理多種 QoS 需求目標之封包分類處理器。 

關鍵詞：服務品質、封包分類、三元內容可尋址記憶體、下一代網際網路協定 
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Fast and Scalable Multi-TCAM Classification Engine for Wide 

Policy Table Lookup 

Abstract 

With the explosive growth of Internet traffic, the next generation switches are 
designed to provide forwarding speed up to 2.5Gbps, 10Gbps, or even 40Gbps. To meet 
the challenges that deliver wire-speed deep packet inspection for various QoS requirements 
makes classification become the bottleneck of next-generation high-speed switches. 
Ternary Content Addressable Memory (TCAM) provides high-speed parallel comparison 
operations and is suitable to implement hardware-based packet classifier. However, 
single-TCAM solution with ultra-high density may not be feasible as this solution is not 
scalable and fast enough to fulfill the wide-policy rule classification. 

To provide scalability and deep packet inspection, our research plans to propose 
pipeline and parallel architectures with multiple TCAMs to obtain wire-speed classification 
for IPv6 and multi-layer applications. To maintain the pipeline and parallel processes, our 
research will propose an algorithm to resolve ambiguous cases and a compact method to 
reduce the space requirements of TCAMs. Applying above mechanisms, our research will 
also propose a packet classification engine capable of handling multiple QoS requirements 
at ultra-high speed. 

Keywords：QoS, Packet Classification, Ternary CAM (TCAM), IPv6 
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1. INTRODUCTION 

In the past few years, with the explosive growth of Internet traffic, the challenges of 
next generation switches and routers are how to simultaneously provide multiple services 
and obtain wire-speed switching. Although network processor-based (NP-based) platforms 
capable of combining flexibility and high-speed switching, almost all network processors 
(NPUs) cannot offer enough computing power and require co-processor to assist to provide 
multiple services at 10 Gbps [1][2]. Furthermore, employing standard memory to perform 
software-based packet classification takes as many as a dozen of memory accesses, and the 
lookup procedure may cause extra delay and delay jitter that affects real-time services. 
Unfortunately, there are more and more Internet applications such as Voice over IP, Video 
Conference, Video on Demand, and etc requiring QoS support [3]. To furnish multi-gigabit 
multi-service switch platform, our research proposes a scalable and fast classification 
co-processor to assistance network processor to cope with wide policy table lookup at 
wire-speed. 

To deal with various QoS requirements in multi-gigabit switches, the packet classifier 
should recognize multiple fields in packet headers within several nano-seconds (ns). Thus, 
the packet classification engine becomes the bottleneck of forwarding process within 
high-speed switches [4]. Generally, Layer-4 classification performs 5-tupple lookup [5] 
and requires less than 144-bit TCAM width. However, while dealing with IPv6 packets, a 
5-tuple (source/destination IPv6 address, source/destination ports, and protocol) classifier 
demands 304-bit width. Because of the over-length header information, single commercial 
TCAM [6-9] are hardly applied to implement classification engine for complex policy 
rules. Considering the hardware limitations of TCAM, there are two limitations while 
employing commercial TCAMs. The first limitation is the width of TCAM is not so 
flexible and cannot be expanded with the policy rule. For example, TCAMs can only be 
configured as 72-, 144-, 288-bit width. Second, longer searching key should take more 
access times to input due to the limitation of data-bus width. For instance, 304-bit IPv6 
classification requires 5 clock cycles for input, 1 clock cycle for lookup, and 1 clock cycle 
for outputting result; the whole lookup procedure totally takes 7 clock cycles. Thus, the 
delay of packet classification increases with the length of policy rule. 

To provide fast and flexible solutions, our research proposes pipeline and parallel 
architectures to implement multi-TCAM-based classification co-processor for improving 
IPv6 and multi-layer (Layer 2-7) classification. In order to obtain the pipeline and parallel 
processes, the trace-back and mis-match problems should be eliminated. To handle these 
problems, our research also presents an algorithm to detect and resolve ambiguous cases. 
Applying above mechanisms, the classification engine can obtain 10Gbps wire-speed 
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classification for multiple services. 

The rest structure of our research is as follows. First of all, we introduce the problem 
of packet classification and the useful hardware TCAM for routing lookup in Section 2. 
The proposed multi-TCAM solutions are introduced in Section 3. Section 4 describes the 
ambiguous cases for the multi-TCAM system and proposes the solutions. The design, 
implementation, and performance evaluation of multi-TCAM classification engine are 
presented in Section 5. Finally, we conclude the contributions in Section 6. 
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2. PACKET CLASSIFICATION WITH TCAM-BASED SOLUTIONS 

In order to support end-to-end QoS, each node along the established QoS path should 
process and forward the packets according to the parameters that are set by signaling 
protocol. In other words, all nodes should be capable of classifying and forwarding the 
packets according to their QoS setup. Since the classification is the bottleneck of 
forwarding process in the switches and routers, this chapter discusses how to design a fast 
and scalable packet classifier to provide QoS in next generation mobile Internet. 

There are two phenomena in the next generation mobile Internet. The former is the 
bandwidth is quickly growing up. Switches and routers should be capable of handling 
multi-gigabit traffic (up to OC-192/OC-768). That is switches and routers should be able to 
process dozen million packets per second. The later is there are more and more QoS 
required applications such as Voice over IP, Video Conference, Internet Games and so on. 
Since the classification is the bottleneck, more QoS requirement makes classifier more 
complex and critical to implement. To satisfy user’s QoS requirement and obtain 
wire-speed switching, lookup process should catch up the speed of switching fabric. 

Ternary Content Addressable/Associated Memory (TCAM) is s special type of fully 
associated memory. Each bit in a TCAM has three states- “0”, “1”, or don’t care “*”. 
TCAM can parallel search all entries of its database. Thus, TCAM performs lookup or 
classification procedure by using constant delay and suitable for designing and 
implementing high-speed switches and routers. 

2.1. Routing Lookup Using TCAM 

Generally, Layer-3 switches and routers using routing protocol such as RIP, OSPF, 
RIPng, BGP4+ to construct the routing table that indicated the best path to next hop. 
Routing table contains route entries consist of the prefix, output port, and network metrics. 
The prefix (140.114.78.*) consists of an IP (140.114.78.2) and a mask (255.255.255.0). 
The scope of this prefix is from 140.114.78.0 to 140.114.78.255. That is, if the destination 
of a coming packet falls in the scope of this prefix, the packet would be transfer to the 
output port recorded in this entry. 

However, IP address of IPv4 is 32-bit, and then all possible entries are up to 4G (232). 
To search these entries to find a best result takes a lot of latency. Thus, recent researches 
are engaged in finding the better algorithm with less memory requirement and less lookup 
delay. TCAM capable of performing constant-delay lookup and longest prefix match (LPM) 
is a good hardware for routing lookup. TCAM consists of two major elements. The first 
element is the ternary CAM array. TCAM array performs parallel comparison and output 
the multi-matched index. The second element is priority encoder. Priority encoder can 
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select the index with highest priority. While DST address of IP address is input into TCAM 
as a key, TCAM performs parallel searching by TCAM array and output the best-matched 
index by priority encoder within constant latency.  

2.2. Issues of Classification Using TCAM 

Although TCAM classifies packets with in constant delay, there are still some issues 
using TCAM as a classifier. 

 Density: Although the width and depth of a TCAM is configurable, the size is usually 
fixed. For a given density, the wider width of a TCAM, the less depth of TCAM 
entries. Hence, for a 2 Mega-bit 128-bit wide TCAM, at most 16K classification rules 
can be supported. As a TCAM row stores a (value, mask) pair, range specifications 
need to be split into mask specifications, further downloading into the number of 
usable TCAM entries. Therefore, the density of TCAM is a problem for IPv6 and 
higher-layer classification due to wider depth is required. 

 Power: Power dissipated in one TCAM row increases proportionally to its width. 

 Updating: Since the entries of routing table of rules should be sorted, TCAM 
updating is another problem. For example, if a prefix (140.114.*.*) has higher priority 
than prefix (140.114.78.*), then the prefix (140.114.78.*) is never matched. That is 
because the packet matched (140.114.78.*) is also matched (140.114.*.*), and 
(140.114.*.*) is selected by priority encoder. As a result, while inserting a routing 
entry or a rule, then TCAM should be sorted again. This procedure takes O(N) in 
worse case. 

In summary, using TCAM has problems on density, power and updating procedure. 
Since single high density TCAM is heavy power consumption and less scalability, we 
proposed multiple-TCAM design to obtain lower power consumption, scalability and fast 
classification for IPv6 and higher layer applications. 

2.3. TCAM Management 

 As the rule classification table is stored in the TCAM, the TCAM management is one 
of most important issues for TCAM-based designs.  Before the rules are downloaded into 
the classification table, they are first pre-processed and sorted. For the pre-processing, the 
“range” defined in each rule is translated into a set of “prefixes” for longest prefix 
matching (LPM), and the “ambiguous rules” should be detected and resolved. The rules in 
the TCAM are stored in form of data and subnet mask. For example, an IPv4 address 
(140.114.78.*) is presented as data (140.114.78.0) and mask (255.255.255.0). Basically, the 
IP addresses and protocol fields can be directly put into TCAM. However, since the “port” 
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fields are often set as a range in the rule, the range should be translated into a set of 
prefixes for longest prefix matching employed in the classification. 

The TCAM provides the LPM function that selecting the best-matched rule by the 
prefix length of rules [10-12]. For layer-3 routing based on the destination IP address, the 
classification is quite simple, only performing the LPM according to the destination IP 
address. However, for higher layer packet classifier, multiple-field examination is required. 
In this case, it is unsuitable to match the best-match rule only according to the prefix length. 
For instance, if two rules with the same total prefix length but not the same prefix length 
for every field, it is not suitable to use multiple-TCAM based classifier. This is also called 
the “ambiguous condition”. Two rules are called ambiguous if any ambiguous condition 
between these two rules exists. Our research will discuss the ambiguous cases in multiple- 
TCAM environment and present the resolve solution.  

Several algorithms have been proposed to improve the multi-field packet 
classification in recently years. Some of these papers presented the software designs [13-15] 
to find out the matched rule, and the others [16-18] designed hardware architectures, for 
example, using CAMs, to accelerate the searching procedure. However, in the worst case, 
these algorithms may suffer from the problem of backtracking in the searching procedure, 
which is undesired in the ultra high-speed lookup engines. For example, let us see the 
multi-level trie structure shown in Figure 1(a). When a packet matches node C in the 
DST-Tree but fails in the SRC-Tree, the algorithm should go back to node B in the 
DST-Tree and then searches the SRC-Tree again. This “backtrack” procedure may take a 
lot of time. To avoid the backtracking issue, some improving mechanisms are proposed by 
employing the additional links; this causes the data structure more complicate.  

(a)                              (b) 

A

DST-Tree

SRC-Tree

B

C

D

F

D
S
T

S
R
C

Index / Action

 

Figure 1. Typical packet classification algorithms. 
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Nevertheless, this situation may also occur for the hardware architecture. Figure 1(b) 
shows that if the destination address of a packet matches multiple entries in the DST table, 
then the searching procedure may need to check the related source information for each of 
the matched destination entries. 

The reason why these algorithms need to perform back tracking in the searching 
procedure is due to in the hash tables or searching trees, the filter entries (rules) may be 
multiple matched. If this happens, then it is difficult to choose one correct result, which is 
an index for next level searching. An elementary idea to resolve this issue is that a rule is 
selected only when all parameters are matched simultaneously. Our research designs 
several logical circuits capable of choosing the accurate rule and exporting the searching 
result within a deterministic latency. 

TCAM has been widely employed for the longest prefix matching lookup in Layer-3 
or Layer-4 switches. TCAM always selects the best-matched rule according to the priority 
level, and therefore the rules need to be sorted before they are stored into the TCAM. We 
take the Layer-3 IP lookup as example, routes are sorted according to the prefix lengths, 
and for Layer-4 packet classification, rules are sorted according to the priority levels. For 
multi-TCAM design, each TCAM stores one field such as source IPv6 address or 
destination IPv6 address. The sorting in each TCAM is done according to the prefix length 
as described before. For example, we have two IPv6 classification rules, R1 = 
(3ffe:3600:B::/48, 3ffe:3600::/32) and R2 = (3ffe:3600::/32, 3ffe:3600:1::/48); where R1 is 
with higher priority level. If R1 is placed in front of R2, then the packets with 
source/destination addresses within in the range (3ffe:3600:B::/48, 3ffe:3600:1::/48) 
always match with R1. Nevertheless, those packets should match with R2. The key matched 
3ffe:3600:B::/48 should also match 3ffe:3600::/32. If 3ffe:3600::/32 is placed in front of 
3ffe:3600:B::/48, then 3ffe:3600:B::/48 will never be selected. Consequently, for 
multi-TCAM system, it is interesting that the entries in each TCAM should be sorted 
according to the prefix lengths, instead of priority levels. 

2.4. Translating Ranges to Prefixes 

It is clear that an IP address can be stored in the TCAM by using the format of 
prefix/subnet mask. But typically, SRC port and DST port are often set as ranges. For 
example, in the typical rules for firewall shown in Figure 2, The SRC-port and DST-port 
for the first rule are set as ranges. Since it is possible that a rule is extended as several rules 
after the translation of a range into a set of prefixes, it is very crucial to have an efficient 
translating algorithm. This section presents a fast algorithm to translate a range into a set of 
minimum number of prefixes. 
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Figure 2. An example of firewall rules with ranges. 

For illustration, let us take a five-bit range for example. The range (2, 11) could be 
partitioned into (2,3), (4,7), and (8,11) which can be presented by three prefixes (0001*), 
(001**), and (010**), respectively as shown in Figure 3(b). Figure 3(a) shows another 
example with range (4,27) which can be translated into a set of four prefixes (001**, 
01***, 10***, 110**). Let L, M, N represent the number of prefixes translated from the 
SRC-port, DST-port, and protocol fields respectively, of a rule. Then a rule can be 
translated into L*M*N rules, such that each field for each of these rules is presented by a 
prefix. For example, consider a rule with SRC-port = (4, 27) and DST-port = (2,11) as 
shown in Figure 3, then this rule can be translated into 4x3 = 12 rules as shown in Figure 
3(c). 

2.5. Range Translation 

 As shown in Figure 4, the policy rules are set through web-based interface. When a 
connection is established, the TCAM management program picks up a rule for this 
connection and downloads the rule into the TCAM. As the SRC and/or DST ports may be 
set as ranges in the rule, it is required to translate the rule into a set of rules with prefix 
format before downloading. 

 The task of translating a range (X,Y), say (4,15), is to convert the range into a set of 
binary prefixes. Let us again take five-bit prefixes for instance. Figure 4 shows the range 
translating procedure. Let the Left point and Right point stand for X (4) and Y (15), 
respectively. Then we can find the Separate-point (SP) by first performing the XOR 
operation on the binary presentations of X (00100) and Y (01111). Thus, Z = (X XOR Y) = 
(01011). Let the LSB of Z be numbered as 0-th bit and the MSB of Z be numbered as 4-th 
bit. Then start from the MSB of Z, let the position where bit transition happens be denoted 
as k-th bit. For this case, we have k = 3 (“0”  “1” happens). Let W be the number which 
all bits are “1” except the right most k bits are “0”. For this case, we have W = 11000. Then 
let SP = (Y AND W) = (01111 AND 11000) = (01000). 
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Range Prefixes
(4, 7) 001** 
(8, 15) 01*** 
(16, 23) 10*** 
(24, 27) 110** 
(a)SRC Range (4, 27) 

Range Prefixes
(2, 3) 0001* 
(4, 7) 001** 
(8, 11) 010** 

 
(b)DST Range (2, 11) 

 
SRC Ranges DST Ranges SRC and DST Prefixes 

(4, 7) (2, 3) 001** : 0001* 

(4, 7) (4, 7) 001** : 001** 

(4, 7) (8, 11) 001** : 010** 

(8, 15) (2, 3) 01*** : 0001* 

(8, 15) (4, 7) 01*** : 001** 

(8, 15) (8, 15) 01*** : 010** 

(16, 23) (2, 3) 10*** : 0001* 

(16, 23) (4, 7) 10*** : 001** 

(16, 23) (8, 15) 10*** : 010** 

(24, 27) (2, 3) 110** : 0001* 

(24, 27) (4, 7) 110** : 001** 

(24, 27) (8, 15) 110** : 010** 

(C) Translated SRC and DST prefixes 

Figure 3. Example of five-bit prefixes stored in the TCAM. 

Move Move
Right

Left
Part

Right
Part

Separate
Point

Left

Merge
Point

Figure 4. Diagram of range translating procedure. 
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The left part (4-7) and right part (8-15) of the SP then be processed individually. For 
the left part, let us start from the smallest element SL of left part (4 in this case). Let wL be 
the number of consecutive “0”s from the LSB of SL. For this case, we have wL = 2. Let WL 
be the number which all bits are “0”s except the right most mL = min(wL,k) bits are “1”s. In 
this case, we have mL = min(wL,k) = (2,3) = 2, and WL = 00011. Let ML = (SL OR WL) be 
the merge point of SL. In this case, we have ML = (00100 OR 00011) = 00111. Then the 
elements located between SL and ML can be merged (presented) as a prefix P(SL) which is 
the same as SL except the right most mL bits are expressed as ‘*’. For this case, we have 
P(SL) = 001**.  

On the other hand, for the right part, let us start from the largest element LR of right 
part (15 in this case). Let wR be the number of consecutive “1” from the LSB of LR. For this 
case, we have wR = 4. Let WR be the number which all bits are “1”s except the right most 
mR = min(wR,k) bits are “0”s. In this case, we have mR = min(wR,k) = (4,3) = 3, and WR = 
11000. Let MR = (WR AND LR) be the merge point of LR. In this case, we have MR = (11000 
AND 01111) = 01000. Then the elements located between MR and LR can be merged 
(presented) as a prefix P(LR) which is the same as LR except the right most mR bits are 
expressed as ‘*’. For this case, we have P(LR) = 01***.  

Let us illustrate this idea more clearly by an example shown in Figure 5, where a 
range (4,27) is translated into a set of four prefixes step by step. Initially, the SP is 
computed first. As (00100 XOR 11011) = 11111, we have k = 4, and W = 10000. SP = 
(11011 AND 10000) = 10000 (16). For the left part elements, let us start from the smallest 
element SL (4). Then we have wL = 2, mL = min(wL,k) = (2,4) = 2, and WL = 00011. Let ML 
= (SL OR WL) = (00100 OR 00011) = 00111. Then the elements located between SL and ML 
can be merged (presented) as a prefix P(SL) = 001** (the 1st generated prefix). Then let the 
next smallest un-processed left elements be SL again (for this case, SL = 8 = 01000). Then 
we have wL = 3, mL = min(wL,k) = (3,4) = 3, and WL = 00111. Let ML = (SL OR WL) = 
(01000 OR 00111) = 01111. Then the elements located between SL and ML can be merged 
(presented) as a prefix P(SL) = 01*** (the 2nd generated prefix).  

For the right part elements, let us start from the largest element LR of right part (27 = 
11011 in this case). Then we have wR = 2, mR = min(wR,k) = (2,4) = 2, and WR = 11100. Let 
MR = (WR AND LR) = (11100 AND 11011) = 11000. Then the elements located between MR 

and LR can be merged as a prefix P(LR) = 110** (the 3rd generated prefix). Then let the next 
largest un-processed right element be LR again (for this case, LR = 23 = 10111). Then we 
have wR = 3, mR = min(wR,k) = (3,4) = 3, and WR = 11000. Let MR = (WR AND LR) = 
(11000 AND 10111) = 10000. Then the elements located between MR and LR can be 
presented as a prefix P(LR) = 10*** (the 4th generated prefix). Finally, we can see that the 
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range (4,27) can be expressed by a set of four prefixes (001**, 01***, 10***, 110**).  

0

0

1

0

0

1

1

0

1

1
Left Right

0

0

1

0

0
Left

Merge Point

1

1

0

1

1
Right

Merge Point

Figure 5. Translate range (4,27) into a set of four prefixes. 

 The proposed translation algorithm is presented as follows. First of all, the algorithm 
finds the SP of the input range (X, Y). Then check if the input range (X,Y) can be merged 
into a single prefix directly. If yes, then the algorithm returns the prefix and stops. 
Otherwise, the algorithm translates the left part elements and right part elements of the SP 
individually according to the procedure mentioned above. 

2.6. Range Translation Algorithm 

Algorithm Range2Prefix 

Input: A range (X,Y)  
Output: A set of translated prefixes for (X,Y) 
Step 1. Find the Separate-Point (SP) of (X,Y).  

Let Z = (X XOR Y). Start from the MSB of Z, let k be the first bit position where bit 
transition happens.  

Prefix = 001**

Range 4 ~ 27

Generate
Prefix

Move to Next
Range

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Prefix = 110**

Move to Next
Range

0

1

0

0

Left

0

Merge Point

1
Right

1

0

1

1

Merge Point

Generate
Prefix

1 3

Prefix = 01*** Prefix = 10***

End Procedure End Procedure

2 4
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Step 2. Check if the (X,Y) can be merged into a single prefix directly. If yes, then return the 
prefix and Stop. 

Step 3. //Translate left part elements 
      Let SL be the smallest un-processed element of left part. 
      Let wL be the number of consecutive “0” from the LSB of SL. 
mL = min(wL,k); 
Let WL be the number which all bits are “0” except the right most mL bits are “1”. 
Let ML = (SL OR WL) be the merge point of SL.  
Output a prefix P(SL) which is the same as SL except the right most mL bits are expressed as 
‘*’.  
If ML ≠ SP-1, then go to Step 3. 
Step 4. //Translate right part elements 
      Let LR be the largest un-processed element of right part. 
      Let wR be the number of consecutive “1” from the LSB of LR. 
mR = min(wR,k); 
Let WR be the number which all bits are “1” except the right most mR bits are “0”. 
Let MR = (WR AND LR) be the merge point of LR.  
Output a prefix P(LR) which is the same as LR except the right most mR bits are expressed 
as ‘*’.  
If MR ≠ SP, then go to Step 4. 
Setp 5. Stop. 
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3. PROPOSED MULTI-TCAM SOLUTIONS 

To cope with various QoS requirements and obtain wire-speed switching, our research 
proposes a classification co-processor performing constant-time classification for network 
processor-based platforms. Most control units break incoming packets into fixed-size 
segments; hence two classification scenarios exist in the network processor-based 
platforms. One scenario is NPU performs packet classification while receiving 
start-of-packet (SOP) signal, the other is NPU does not classify the packet until receive 
entire packet. The lookup operations of these two scenarios are significantly different. As 
the header information refers to several segments in the first scenario, NPU performs each 
lookup while NPU gets the header information. NPU can acquire the whole searching key 
and perform lookup procedure while receiving end-of-packet (EOP) signal. Therefore, our 
research proposes two architectures of classification co-processor by utilizing multiple 
TCAMs. In the rest of this session, our research first presents two multi-TCAM 
architectures for different classification scenarios. Then, our research describes the sorting 
scheme in the multi-TCAM systems. Finally, our research shows the ambiguous cases that 
may cause the trace-back and mis-match problems. 

3.1. Pipeline and Parallel Multi-TCAM Architectures 

Since the whole classification procedure includes input, search, and output steps, the 
lookup latency is the sum of the delays of all steps. In other words, searching longer policy 
table to classify packets takes more time due to the limitation of hardware bus. Take 
five-tuple IPv6 packet classification as an example; 304-bit searching key should be 
inputted 5 times on 72-bit data bus. To improve the throughput of packet classification, our 
research proposes pipeline architecture utilizing multiple TCAMs for the first scenario. 
This architecture shown in Figure 6 is able to output a result every four clock-cycles with 
pipeline process. 

For the first scenario, FPGA controller is responsible for inputting searching keys, 
handling lookup procedures, and finally outputting the lookup results. TCAMs are used to 
store the policy table. Three TCAMs store IPv6 source addresses, IPv6 destination 
addresses, and information of protocols and ports respectively. In our design, the TCAM-3 
also stores the action table. In the first searching step, TCAM-1 outputs the associated tag, 
and the FPGA controller combines the tag with second searching key (IPv6 destination 
address) to perform second search. After that, TCAM-2 outputs the second tag and FPGA 
controller combines the tag with third key (ports and protocol) to perform third search. 
Finally, TCAM-3 outputs the lookup result. This lookup procedure can be pipeline 
executed. Taking advantage of pipeline process, the proposed classification can output one 
result every four clock-cycles at full rate. 
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In the second scenario, the classifier can get the whole packet information. Thus, our 
research proposes the parallel architecture to employ multiple TCAMs and increase lookup 
speed. The architecture of proposed parallel multi-TCAM classification engine is shown in 
Figure 7. After NPU acquires the whole searching keys, NPU inputs the keys through 
FPGA controller. Then, all TCAMs execute the lookup procedure simultaneously and 
produce the associated indexes. Afterwards, the classifier combines all associated indexes 
and sends to the Binary CAM to perform hash operation. Eventually, FPGA controller 
replies the result to NPU. The proposed architecture can simultaneously search all fields 
and get a result after four clock-cycles. 

Classification Engine
(FPGA Controller)

TCAM-1
144-bit Addr

(SRC)

TCAM-2
144-bit Addr

(DST)

TCAM-3
144-bit

Protocol and
Ports

72 72 72

Input Output

Databus

 
Figure 6. The pipeline architecture of proposed Classification Engine. 

Since TCAM performs ternary (0, 1, and don’t care) searching, multiple matches may 
exist in TCAMs. Although TCAM always selects the index with longest prefix length, not 
all fields of highest policy rule has longest prefix length. Therefore, selecting the accurate 
index is critical. 

3.2. Sorting in Multi-TCAM Systems 

Ternary CAM is adept at performing longest prefix match (LPM) to find out the best 
route for Layer-3 IP lookup. In other words, the data should be sorted before stored into 
TCAM, and TCAM selects the best-matched rule according to the priority. For Layer-3 
lookup, routes are sorted by using their prefix lengths, and rules are sorted by their 
priorities for Layer-4 classification. Our research employs multiple TCAMs in pipeline and 
parallel architectures increasing the throughput of packet classification. Since each TCAM 
stores just one field such as source or destination IPv6 address, sorting in each TCAM is 
according to the prefix length. For example, two rules- R1and R2, R1 is (3ffe:3600:B::/48, 
3ffe:3600::/32) and R2 is (3ffe:3600::/32, 3ffe:3600:1::/48); R1 has higher priority than R2. 
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If R1 is put in front of R2 along the priority, then the packets in the range (3ffe:3600:B::/48, 
3ffe:3600:1::/48) always matches R1. Nevertheless, the packets within this range should 
match R2. The key matched 3ffe:3600:B::/48 should also match 3ffe:3600::/32. If 
3ffe:3600::/32 is put in front of 3ffe:3600:B::/48, then 3ffe:3600:B::/48 is never selected. 
Accordingly, for multi-TCAM system, the entries in each TCAM should be sorted along 
the prefix length, instead of priority. 

Classification Engine
(FPGA Controller)

TCAM-1
144-bit Addr

(SRC)

TCAM-2
144-bit Addr

(DST)

TCAM-3
144-bit

Protocol and
Ports

72 72 72

Input Output

Databus

Binary CAM
 

Figure 7. The parallel architecture of proposed Classification Engine. 

3.3. Trace-back and Mis-match Problems 

To furnish fast and scalable classification engines, the proposed scheme has to 
eliminate undesirable factors for smoothly executing pipeline and parallel classification. 
Take the pipeline architecture as an example, if any one TCAM selects incorrect index, the 
classification procedure would occur error. Then the procedure must go back to previous 
TCAM and search again. Thus, in this case, classification procedure might spend extra 
time to lookup and fail to obtain the index at constant-time. The problem that causes extra 
actions is called the trace-back problem. On the other hand, while executing the parallel 
classification, all TCAMs must simultaneously select an associated index for Binary CAM 
(BCAM) to execute the hash operation. However, if any TCAM selects incorrect index, 
then BCAM could not output the accurate result. We define this situation as a mis-match 
problem. Consequently, the factors of trace-back problem and mis-match problem in 
multi-TCAM system should be eliminated to ensure fast packet classification. 

In our research, we define the ambiguous cases between two rules, and these two 
rules would cause trace-back and mis-match problems. The ambiguous cases between two 
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rules have been presented in previous articles [19-20]. These articles present that two rules 
contains ambiguous cases if they are overlapped, but the relations of policy rules in 
multi-TCAM systems are not the same. For simplicity, let us use two-field (source and 
destination address fields) rules as an example. Consider the relation of six rules shown in 
Figure 8. The rules R1 and R2 are completely disjoined, rules R3 and R4 contain an 
overlapping area, and R6 is a subset of R5. For instance, consider the rules R5 and R6 shown 
in Figure 8. Since both the source and destination fields of rule R6 have longer prefix 
length than those of rule R5, we say that R6 is a subset of R5. For this case, it is clear that R6 
should have a higher priority than R5. Otherwise, rule R6 will never have the chance to be 
matched. In this case, we can just set R6 higher than R5 in all TCAMs. On the other hand, 
the source field of R2 is a subset of R1. If lookup source field first, R2 is always selected. If 
the key is matched R1, this case causes the trace-back problem. Since Layer-4 packet 
classification lookups multiple fields, the priority between two rules in the classification 
table should be arranged more carefully. 

R1

R2

R4

R3

R5

R6

SRC

DST 2128

2128

Fully OverlapPartial OverlapDisjoin

 
Figure 8. Relationships between six two-field rules. 

 To sum up, our research defines two ambiguous cases that cause two rules Ri and Rj 
ambiguous in multi-TCAM environments. The first one is when there exists one field of Ri 
is a subset of Rj and one field of Rj is a subset of Ri. The first ambiguous case is also called 
conflict rules in literature [19]. The second case is that there is one overlapped field and 
one disjoined field between Ri and Rj. In case the TCAM contains conflict rules, then it is 
difficult for TCAM to select the best-matched rule by only according to the prefix length. 
Searching each field sequentially may suffer second ambiguous case. Since all fields 
should be matched at the same time, to decide the best selection by LPM in one 
TCAM/field is inappropriate. In other words, if the TCAM selects a wrong entry for the 
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first field and lookups the second field, then this will cause a trace-back [21] search. 

 Obviously, TCAM-classification might not work well if exists ambiguous rules. The 
ambiguous cases in multi-TCAM environments are defined in the following section. The 
detection and resolution algorithms for this problem are also introduced as well. 

3.4. Comparisons of Proposed Multi-TCAM Solutions 

To conclude this section, we compare the proposed pipeline and parallel multi-TCAM 
solutions and depict their characteristics in Table 1. In the pipeline solution, the NPU 
performs classification while receiving start-of-packet (SOP) signal. In parallel solution, 
the NPU does not classify the packet until receives end-of-packet (EOP) signal. Thus the 
pipeline solution is suitable for applying on the classification algorithm that lookup each 
field at each step. On the other hand, the parallel solution is suitable for the algorithm that 
takes the whole header information to lookup. Looking into the hardware specification, 
both of these two solutions consist of a FPGA controller and three 144-bit-width TCAMs. 
Besides, parallel solution has an extra Binary CAM to perform hashing function and select 
the result. Since parallel solution has one extra BCAM, pipeline solution is cheaper than 
parallel solution. Considering the classification latency, the pipeline solution performs 
three-step lookup operations and each step takes 4 clock cycles to get a result. Thus, the 
whole lookup procedure takes total 12 clock cycles. By contrast, parallel solution takes 4 
clock cycles to perform one lookup procedure. Nevertheless, the throughputs of these two 
solutions are the same. 

Table 1. Comparison of characteristics with pipeline and parallel Multi-TCAMs. 

Items Pipeline Architecture Parallel Architecture 
Classification When receiving SOP When receiving EOP 
# of FPGA 1 1 
# of TCAM 3 3 
# of Binary CAM 0 1 
Classification Latency 12 clock cycles 4 clock cycles 
Throughput 1 per 4 clock cycles 1 per 4 clock cycles 
Problem Trace-back Mis-match 

Both pipeline and parallel solutions can improve the throughput and the scalability for 
wide policy table lookup. However, the trace-back and mis-match problems may block the 
pipeline and parallel processes. Since the ambiguous cases in multi-TCAM systems causes 
these two problems, the proposed classification engine can obtain fast and scalable lookup 
as long as removing the ambiguous cases. Therefore, our research introduces the 
ambiguous cases and presents the solutions in the next session.
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4. HANDLING AMBIGUOUS CASES 

 To provide pipeline and parallel processes for multi-TCAM systems, the trace-back 
and mis-match problems must be removed. Previous article [20] has proposed that if two 
rules contain any overlap region, then these two rules are ambiguous and may cause 
trace-back problem in multi-TCAM systems. By this definition, (R5, R6) and (R3, R4) in 
Figure 8 are ambiguous rules. However, since all entries in each TCAM are sorted by 
prefix length, R5 and R6 can be distinguished by prefix length. On the other hand, although 
R1 and R2 are disjoined in Figure 8, the source fields of these two rules are overlapped. R1 
and R2 are ambiguous when lookup the source field first. Hence, our research presents two 
ambiguous cases that cause trace-back and mis-match problems in multi-TCAM systems. 
Finally, our research shows the solutions of detecting and solving these cases in the rest of 
this session. 

4.1. Ambiguous Cases in Multi-TCAM Environments 

All entries are represented as prefixes in TCAM (ranges can also be translated to 
prefixes), so the relation between the same field of two rules can be classified as subset, 
super-set, or disjoin. To clarify, let and  be the i-th field of rules A and B, 
respectively. Then ⊂  to denote that is a subset of , and ⊗ to denote 
that and  are disjoined. The ambiguous cases in multi-TCAM systems are defined 
as follows, and for simplification, our research takes two five-bit fields for example: 

i
AR i

BR
i
A

i
AR i

BR R i
BR i

AR i
BR

i
AR i

BR

Case I: Overlapping Rules 

In the first case, rules A and B are overlapped if there exists ⊂  and ⊂ , 
where i ≠ j. Take Figure 8 as an example again and assume the priority of R3 is higher than 
that of R4. In single-TCAM environment, this is a simple case and what we should do is to 
put R3 on a higher position than R4 in the rule table. Nevertheless, in multi-TCAM 
environment, each field (a TCAM) should be sorted by prefix length. Taking two 
conflicting rules, (10***, *****) and (*****, 101**), for instance, these rules are 
overlapped in the area (10***, 101**).  

i
AR i

BR j
BR j

AR

Case II: Hidden Overlapped Rules 

The second case is that rules A and B are hidden overlapped if there exists some 
field ⊂  and for other fields ⊗ , where i ≠ j. For instance, the rules R1 and R2 in 
Figure 8 are hidden overlapped. As for the source field, R2 is a subset of R1. But for the 
destination field, they are disjoined in Figure 8. Actually, for single-TCAM systems, R1 
and R2 are completely disjoined. However, in the multi-TCAM systems, each field is stored 
in one TCAM and the packet classification algorithm compares one field each step. In this 

i
AR i

BR j
AR j

BR
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case, it is possible that while searching the source field in the first TCAM, and a wrong 
rule may be selected according to the longest prefix match algorithm. As a result, the 
packet classifiers should trace-back and retry several times. This trace-back scheme is 
undesirable since it would take various delays to select the best rule. The proposed method 
is to insert a new rule into the rule table to resolve this ambiguous problem and obtain 
constant-time lookup. 

Take R1=(10***,11***) and R2=(101**,10***) for example, R1 and R2 cause a hidden 
overlapped case in a two-TCAM system. When a packet with (source, destination) = 
(10110, 11100) comes in, and the classifier takes the source field as the search key. The 
classifier selects R2 with the longest prefix matching. However, when destination field 
(another TCAM) fails in searching, another entry in source field should be search again. 

4.2. Detecting and Resolving Conflict rules 

According to above mention, there are two kinds of conflicts (overlapped and hidden 
overlapped) among the rules in the multi-TCAM systems. This section proposes the ways 
to detect and resolve these ambiguous cases. 

Solution for Case I: 

In the first case, two rules A and B are ambiguous, if there exists ⊂  and 
⊂ , where i ≠ j. The longest prefix match algorithm is unable to select the correct rule 

merely according to the prefix length. 

i
AR i

BR
j

BR j
AR

 The detecting procedure first distinguishes if all fields of two rules A and B are 
disjoined. Disjoin rules are undoubtedly not conflicted. If rule A and B are not disjoined 
but A is a subset of B or B is a subset of A, then A and B can be distinguished successfully 
by prefix length. The rest of the detecting procedure checks the subset relation of all fields 
of rule A and B. 

 The solution for this conflict case is to add a new rule C, in which each field of C is 
the longer prefix of rules A and B. This resolving algorithm should be recursively executed. 
After adjusting, the packets belongs to overlapping area will match rule C by LPM. 

Solution for Case II: 

Two rules A and B have ambiguous case 2, if there exists some field ⊂  and for 
other fields ⊗ , where i ≠ j. The detecting procedure first distinguishes if two rules A 
and B are hidden overlapped. If rule A and B are hidden overlapped as for the source field, 
B is a subset of A, but for the destination field, they are disjoined. The detecting procedure 
of hidden overlapped rules only exists in the multi-TCAM systems as each field is stored 

i
AR i

BR
j
AR j

BR
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in one TCAM and the packet classification algorithm compares one field at each step. 

Similar to case I, the solution for this conflict is to add a new rule C in the rule table. 
The source field of rule C is the longer prefix length of the source field of rules A and B; 
however, the destination field is referred to the shorter prefix length destination field of 
rule A and B. After inserting rule C, the packet will match this new rule. Though this 
scheme inserts additional rules, it keeps the advantage of constant searching time for all 
cases. 

4.3. Lookup Operations Without Ambiguous Cases 

After detecting and resolving the ambiguous cases, the pipeline and parallel 
multi-TCAM system will not encounter trace-back and mis-match problems. In other 
words, the proposed multi-TCAM classification engine can take advantage of the benefits 
of pipeline and parallel architecture and enhance the lookup speed. The following contents 
give two examples for pipeline and parallel architectures individually. 

To simplify the demonstration, we utilize two fields to show the lookup operations 
and point out the difference between original and modified policy tables. Figure 9 shows 
the first example for pipeline architecture. There are two rules that 
R1(140.114.78.*,140.114.*.*) and R2(140.114.*.*,140.114.79.*) in the policy table, and R1 
has higher priority than R2. For incoming packet (140.114.78.59,140.114.79.80), TCAM-1 
selects longest prefix rules and outputs T1 Then, combine T1 and second key 
(140.114.79.80) will not match in TCAM-2 without handling ambiguous rules. In this case, 
the trace-back problem occurs and classifier cannot get the correct result. To avoid 
trace-back problem, new rule-R3 detecting form ambiguous cases is created and inserted 
into policy table. The lookup procedure is as the following. First lookup in TCAM-1 also 
get the result (T1). Then, TCAM-2 outputs the correct result (A1) after eliminating 
ambiguous cases. In addition, the number of rule does not increase in TCAM-1 since the 
same data entries can be compacted with the same tag. Consequently, the pipeline 
architecture can be executed smoothly without the trace back problems. 

For the parallel scenario shown in Figure 10, the policy rules are divided into two 
parts and store in TCAM-1 and TCAM-2. BCAM is a hash table and stores hash keys for 
policy rules. Classification engine inputs the searching keys into TCAMs concurrently and 
output the associated index. By combining the outputs from TCAM as a hash key, BCAM 
can lookup and output the correct result. 

Originally, TCAM-1 and TCAM-2 output associated indexes (X1 and Y2) 
respectively. However, inputting the combination of X1 and Y2 will not match in the 
BCAM hashing. After the modification, only BCAM inserts a new hashing entry and 
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TCAMs make no change. Although TCAMs still output X1 and Y2, BCAM can extract the 
correct result after removing the mis-match problem. 

Original Policy Table
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140.114.*.*
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R1
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A1
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TCAM-2
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R1
Result

A1
140.114.*.* 140.114.79.*R2 A2

Modified Policy Table

140.114.78.* 140.114.79.*R3 A1

 
Figure 9. Lookup operations of the pipeline architecture. 
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Figure 10. Lookup operations of the parallel architecture. 
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5. IMPLEMENTATION AND PERFORMANCE EVALUATION 

Network processors [22-24] with flexibility, high performance, and rich set of APIs 
furnish good platforms to build up a QoS supported high-speed switches. However, 
network processors hardly provide enough computing power for more QoS requirement 
while scaling to 10 Gbps. Take Intel IXP1200 as an example, pure software-based packet 
processing requires roughly 700 instructions. Therefore, the classification not only 
consumes most computing power but also produces extra latency and delay jitter, which 
may affect real-time traffic. Our research proposes a classification co-processor with 
multiple TCAMs to share the NPU’s loading and classify packets within constant latency. 

Table 2 shows the comparison of single-TCAM systems [19], [21], [25-28] and 
multi-TCAM systems. Since commercial TCAM [6-9] has hardware limitation, single 
TCAM can only be configured to 72-, 144-, 288-bit widths and takes more time to input 
longer policy rules. On the other hand, multi-TCAM classification engine would be more 
scalable, fast and cost efficient than single-TCAM system. Furthermore, taking advantage 
of pipeline, outputting the 304-bit IPv6 packets classification result only requires 4 clock 
cycles for multiple TCAM systems. Obviously, due to smoothly executing pipeline 
procedure, multi-TCAM classifier is faster than single TCAM classifier. Since lookup 
procedure of single-TCAM system totally takes 7 clocks, the maximum speed of 
single-TCAM system can only reach 7Gbps with 100MHz TCAM and 64-byte packets. On 
the other hand, the pipeline and parallel solutions can output one result every 4 clocks. The 
maximum speed of proposed classification engine can achieve wire-speed deep packet 
inspection at 10Gbps. 

 Table 2. Comparison of single-TCAM and multi-TCAM classification engine. 

Items Single TCAM Multiple TCAMs 
Scalability No Yes 

Cost High Low 
Power Consumption High Low 

Throughput 1 result per 7 clocks 1 result per 4 clocks 
Max Speed 7Gbps 12Gbps 

In our implementation, Verilog is used to develop the FPGA controller in Max Plus II 
software; the Altera FPGA (EPF10K200EBC600-1) controller and Network Search Engine 
(NSE3128, TCAM) of Netlogic Microelectronics Inc. [8] are employed. The simulation 
results in Max Plus II show that the FPGA controller can obtain 33-45Mhz, thus each clock 
cycle takes 22ns-33ns. Due to the width limitation of data-bus, the entire lookup procedure 
for 304-bit field totally takes 7 clock cycles. Applying proposed pipeline and parallel 
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architectures, each result is generated in every 132ns (4*33ns). Figure 11 shows the 
evaluation for pipeline architecture. This pipeline process furnishes 8-million packet 
classifications per second. In other words, this implementation has the ability to handle 4 
gigabits per second in the evaluation systems when packet length is 64 bytes (minimum 
length for Ethernet packets). Similarly, parallel architecture can also reach the same speed. 
The proposed hardware classification engine can perform wire-speed lookup at 10 Gbps as 
long as replacing the FPGA controller with 100MHz chip. 
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           Figure 11. Evaluation of performance of the pipeline multi-TCAM architecture. 

In order to increase the throughput of classification, our research proposes the 
pipeline and parallel hardware architectures. To perform pipeline lookup procedure, the 
trace-back and mis-match problems must be eliminated. Although the proposed algorithm 
solves the trace-back and mis-match problems, inserting rules may cause the rule table of 
TCAM to grow up in pipeline architecture. On the contrary, TCAMs make no changes in 
the parallel architecture. Therefore, our research presents a compact method capable of 
merging TCAM data entries for pipeline architecture. 

Table 3. Comparison of number of original rules and TCAM rules. 

Original rules Max TCAM Rules Compact Rules 

100 100 95 
1,000 1,002 992 
10,000 10,263 10,006 
50,000 50,914 50,045 

We simulated the varied rule table sizes from 100 to 50,000 rules by using randomly 
generated rules, the compact result is shown in Table 3. Due to extra rules, the maximum 
number of TCAM entries is more than original rule number. For the pipeline lookup 
procedure, there are two cases that TCAM data entries can be compacted. The former case 
is ⊂  for all i, and the action of these two rules are the same. In this case, RA is a 
redundant rule and RB can represent RA and RB. The later case is =  for any field, and 
then these two data entries can be merged even they are belong to different rules. Finally, 
the size of policy rules decreases and does not increase exponentially after compacting.

i
AR i

BR
i
AR i

BR
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6. CONCLUSION 

To provide wire-speed classification for multi-service switches at 10Gbps, our 
research proposes pipeline and parallel architectures employing multiple TCAMs to obtain 
wire-speed classification for IPv6 and multi-layer applications. To maintain pipeline and 
parallel process, our research proposes an algorithm to resolve ambiguous cases and a 
compact method to reduce the memory requirements of TCAMs. 

 By applying above mechanisms, the proposed classification engine can classify 
packets every four clock-cycles. In other words, this classification engine can obtain 12 
Gbps with minimum length of Ethernet packets by employing 100 MHz TCAMs. In 
addition, the proposed classification engine is scalable for various QoS requirements by 
extending FPGA controller and number of TCAMs. Therefore, the proposed classification 
engine furnishes not only the much fast wide policy table lookup but also more scalability 
on ultra-high speed switch design. 
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