PATRE A ] RPEHEFATES RS

Peig

2 P42 5 TCAM3te A B3 LA £ 2 P4 i0%

—

Fast and Scalable Multi-TCAM Classification Engine for
Wide Policy Table Lookup

e OEaad) s O édz32 WRA%

-4 %% 0 MUST-97 F 1 -01

HpEgr:  97& 1% 1px 97& 9% 30p
FEAFA I mED

EagFAl

E R AR

N

FedZ N TR

HEIEE TR 2 %

v F % ] 97 # 10 ¥ 9 p



E 2 T2 5 TCAM 41¢ A 5Bt 4 £33 Bl 4 0%

K2

dO R R R B TR L R S il R R
B @ﬁﬂgﬁ;"a % 3 2.5Gbps -~ 10Ghps # 1 %
Kité et T s 54Q0S g R HE s @
ZBEBAIE o= AP FT

P - R L BAR
i 40Gbps o #3101 i R 2 IE
ﬁs&ﬁ»ﬁiT—#$&iﬁﬁﬁ
ZheBi(TCAM) HEFFE T (T2 RFE > ¥ 9
ERFNAMAH AFEE -2 E REBALE - TCAM ¥
FAREFEFTIHLE S KRB A BHE S HER

STREVHALEFEAH KA AFLHERNET S K TCAM 2 g & 2
AR BT *ﬁIPVG z ;ﬁéf@;’*i FUE R A e AuE e 2 DA
BT T g2 R A - BT M RAHCR Rk b R - R AR 2
% *% < TCAMS m_«FF’J’Q.ﬁ‘\ f@'** 1 F%#%F AR s R
7548 Q0S F K ez 4te AL B

MAEi RAES T HE A

TR fRA-> 2 %

.*T.’f—;’

~ B AR R

o

AR FEFEFHERM T - NIRRT



Fast and Scalable Multi-TCAM Classification Engine for Wide
Policy Table Lookup

Abstract

With the explosive growth of Internet traffic, the next generation switches are
designed to provide forwarding speed up to 2.5Gbps, 10Gbps, or even 40Gbps. To meet
the challenges that deliver wire-speed deep packet inspection for various QoS requirements
makes classification become the bottleneck of next-generation high-speed switches.
Ternary Content Addressable Memory (TCAM) provides high-speed parallel comparison
operations and is suitable to implement hardware-based packet classifier. However,
single-TCAM solution with ultra-high density may not be feasible as this solution is not
scalable and fast enough to fulfill the wide-policy rule classification.

To provide scalability and deep packet inspection, our research plans to propose
pipeline and parallel architectures with multiple TCAMs to obtain wire-speed classification
for IPv6 and multi-layer applications. To maintain the pipeline and parallel processes, our
research will propose an algorithm to resolve ambiguous cases and a compact method to
reduce the space requirements of TCAMSs. Applying above mechanisms, our research will
also propose a packet classification engine capable of handling multiple QoS requirements
at ultra-high speed.

Keywords : QoS, Packet Classification, Ternary CAM (TCAM), IPv6
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1. INTRODUCTION

In the past few years, with the explosive growth of Internet traffic, the challenges of
next generation switches and routers are how to simultaneously provide multiple services
and obtain wire-speed switching. Although network processor-based (NP-based) platforms
capable of combining flexibility and high-speed switching, almost all network processors
(NPUs) cannot offer enough computing power and require co-processor to assist to provide
multiple services at 10 Gbps [1][2]. Furthermore, employing standard memory to perform
software-based packet classification takes as many as a dozen of memory accesses, and the
lookup procedure may cause extra delay and delay jitter that affects real-time services.
Unfortunately, there are more and more Internet applications such as Voice over IP, Video
Conference, Video on Demand, and etc requiring QoS support [3]. To furnish multi-gigabit
multi-service switch platform, our research proposes a scalable and fast classification
co-processor to assistance network processor to cope with wide policy table lookup at
wire-speed.

To deal with various QoS requirements in multi-gigabit switches, the packet classifier
should recognize multiple fields in packet headers within several nano-seconds (ns). Thus,
the packet classification engine becomes the bottleneck of forwarding process within
high-speed switches [4]. Generally, Layer-4 classification performs 5-tupple lookup [5]
and requires less than 144-bit TCAM width. However, while dealing with IPv6 packets, a
5-tuple (source/destination IPv6 address, source/destination ports, and protocol) classifier
demands 304-bit width. Because of the over-length header information, single commercial
TCAM [6-9] are hardly applied to implement classification engine for complex policy
rules. Considering the hardware limitations of TCAM, there are two limitations while
employing commercial TCAMSs. The first limitation is the width of TCAM is not so
flexible and cannot be expanded with the policy rule. For example, TCAMs can only be
configured as 72-, 144-, 288-bit width. Second, longer searching key should take more
access times to input due to the limitation of data-bus width. For instance, 304-bit IPv6
classification requires 5 clock cycles for input, 1 clock cycle for lookup, and 1 clock cycle
for outputting result; the whole lookup procedure totally takes 7 clock cycles. Thus, the
delay of packet classification increases with the length of policy rule.

To provide fast and flexible solutions, our research proposes pipeline and parallel
architectures to implement multi-TCAM-based classification co-processor for improving
IPv6 and multi-layer (Layer 2-7) classification. In order to obtain the pipeline and parallel
processes, the trace-back and mis-match problems should be eliminated. To handle these
problems, our research also presents an algorithm to detect and resolve ambiguous cases.
Applying above mechanisms, the classification engine can obtain 10Gbps wire-speed



classification for multiple services.

The rest structure of our research is as follows. First of all, we introduce the problem
of packet classification and the useful hardware TCAM for routing lookup in Section 2.
The proposed multi-TCAM solutions are introduced in Section 3. Section 4 describes the
ambiguous cases for the multi-TCAM system and proposes the solutions. The design,
implementation, and performance evaluation of multi-TCAM classification engine are
presented in Section 5. Finally, we conclude the contributions in Section 6.



2. PACKET CLASSIFICATION WITH TCAM-BASED SOLUTIONS

In order to support end-to-end QoS, each node along the established QoS path should
process and forward the packets according to the parameters that are set by signaling
protocol. In other words, all nodes should be capable of classifying and forwarding the
packets according to their QoS setup. Since the classification is the bottleneck of
forwarding process in the switches and routers, this chapter discusses how to design a fast
and scalable packet classifier to provide QoS in next generation mobile Internet.

There are two phenomena in the next generation mobile Internet. The former is the
bandwidth is quickly growing up. Switches and routers should be capable of handling
multi-gigabit traffic (up to OC-192/0OC-768). That is switches and routers should be able to
process dozen million packets per second. The later is there are more and more QoS
required applications such as Voice over IP, Video Conference, Internet Games and so on.
Since the classification is the bottleneck, more QoS requirement makes classifier more
complex and critical to implement. To satisfy user’s QoS requirement and obtain
wire-speed switching, lookup process should catch up the speed of switching fabric.

Ternary Content Addressable/Associated Memory (TCAM) is s special type of fully
associated memory. Each bit in a TCAM has three states- “0”, “1”, or don’t care “*”.
TCAM can parallel search all entries of its database. Thus, TCAM performs lookup or
classification procedure by using constant delay and suitable for designing and
implementing high-speed switches and routers.

2.1. Routing Lookup Using TCAM

Generally, Layer-3 switches and routers using routing protocol such as RIP, OSPF,
RIPng, BGP4+ to construct the routing table that indicated the best path to next hop.
Routing table contains route entries consist of the prefix, output port, and network metrics.
The prefix (140.114.78.*) consists of an IP (140.114.78.2) and a mask (255.255.255.0).
The scope of this prefix is from 140.114.78.0 to 140.114.78.255. That is, if the destination
of a coming packet falls in the scope of this prefix, the packet would be transfer to the
output port recorded in this entry.

However, IP address of IPv4 is 32-bit, and then all possible entries are up to 4G (2%9).
To search these entries to find a best result takes a lot of latency. Thus, recent researches
are engaged in finding the better algorithm with less memory requirement and less lookup
delay. TCAM capable of performing constant-delay lookup and longest prefix match (LPM)
is a good hardware for routing lookup. TCAM consists of two major elements. The first
element is the ternary CAM array. TCAM array performs parallel comparison and output
the multi-matched index. The second element is priority encoder. Priority encoder can
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select the index with highest priority. While DST address of IP address is input into TCAM
as a key, TCAM performs parallel searching by TCAM array and output the best-matched
index by priority encoder within constant latency.

2.2. Issues of Classification Using TCAM

Although TCAM classifies packets with in constant delay, there are still some issues
using TCAM as a classifier.

B Density: Although the width and depth of a TCAM is configurable, the size is usually
fixed. For a given density, the wider width of a TCAM, the less depth of TCAM
entries. Hence, for a 2 Mega-bit 128-bit wide TCAM, at most 16K classification rules
can be supported. As a TCAM row stores a (value, mask) pair, range specifications
need to be split into mask specifications, further downloading into the number of
usable TCAM entries. Therefore, the density of TCAM is a problem for IPv6 and
higher-layer classification due to wider depth is required.

B Power: Power dissipated in one TCAM row increases proportionally to its width.

B Updating: Since the entries of routing table of rules should be sorted, TCAM
updating is another problem. For example, if a prefix (140.114.*.*) has higher priority
than prefix (140.114.78.*), then the prefix (140.114.78.%) is never matched. That is
because the packet matched (140.114.78.*%) is also matched (140.114.*.*), and
(140.114.*.*) is selected by priority encoder. As a result, while inserting a routing
entry or a rule, then TCAM should be sorted again. This procedure takes O(N) in
WOorse case.

In summary, using TCAM has problems on density, power and updating procedure.
Since single high density TCAM is heavy power consumption and less scalability, we
proposed multiple-TCAM design to obtain lower power consumption, scalability and fast
classification for IPv6 and higher layer applications.

2.3. TCAM Management

As the rule classification table is stored in the TCAM, the TCAM management is one
of most important issues for TCAM-based designs. Before the rules are downloaded into
the classification table, they are first pre-processed and sorted. For the pre-processing, the
“range” defined in each rule is translated into a set of “prefixes” for longest prefix
matching (LPM), and the “ambiguous rules” should be detected and resolved. The rules in
the TCAM are stored in form of data and subnet mask. For example, an IPv4 address
(140.114.78.*) is presented as data (140.114.78.0) and mask (255.255.255.0). Basically, the
IP addresses and protocol fields can be directly put into TCAM. However, since the “port”

4



fields are often set as a range in the rule, the range should be translated into a set of
prefixes for longest prefix matching employed in the classification.

The TCAM provides the LPM function that selecting the best-matched rule by the
prefix length of rules [10-12]. For layer-3 routing based on the destination IP address, the
classification is quite simple, only performing the LPM according to the destination IP
address. However, for higher layer packet classifier, multiple-field examination is required.
In this case, it is unsuitable to match the best-match rule only according to the prefix length.
For instance, if two rules with the same total prefix length but not the same prefix length
for every field, it is not suitable to use multiple-TCAM based classifier. This is also called
the “ambiguous condition”. Two rules are called ambiguous if any ambiguous condition
between these two rules exists. Our research will discuss the ambiguous cases in multiple-
TCAM environment and present the resolve solution.

Several algorithms have been proposed to improve the multi-field packet
classification in recently years. Some of these papers presented the software designs [13-15]
to find out the matched rule, and the others [16-18] designed hardware architectures, for
example, using CAMs, to accelerate the searching procedure. However, in the worst case,
these algorithms may suffer from the problem of backtracking in the searching procedure,
which is undesired in the ultra high-speed lookup engines. For example, let us see the
multi-level trie structure shown in Figure 1(a). When a packet matches node C in the
DST-Tree but fails in the SRC-Tree, the algorithm should go back to node B in the
DST-Tree and then searches the SRC-Tree again. This ““backtrack™ procedure may take a
lot of time. To avoid the backtracking issue, some improving mechanisms are proposed by
employing the additional links; this causes the data structure more complicate.

(@) (b)

Index / Action

ﬁﬁ e

Figure 1. Typical packet classification algorithms.
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Nevertheless, this situation may also occur for the hardware architecture. Figure 1(b)
shows that if the destination address of a packet matches multiple entries in the DST table,
then the searching procedure may need to check the related source information for each of
the matched destination entries.

The reason why these algorithms need to perform back tracking in the searching
procedure is due to in the hash tables or searching trees, the filter entries (rules) may be
multiple matched. If this happens, then it is difficult to choose one correct result, which is
an index for next level searching. An elementary idea to resolve this issue is that a rule is
selected only when all parameters are matched simultaneously. Our research designs
several logical circuits capable of choosing the accurate rule and exporting the searching
result within a deterministic latency.

TCAM has been widely employed for the longest prefix matching lookup in Layer-3
or Layer-4 switches. TCAM always selects the best-matched rule according to the priority
level, and therefore the rules need to be sorted before they are stored into the TCAM. We
take the Layer-3 IP lookup as example, routes are sorted according to the prefix lengths,
and for Layer-4 packet classification, rules are sorted according to the priority levels. For
multi-TCAM design, each TCAM stores one field such as source IPv6 address or
destination IPv6 address. The sorting in each TCAM is done according to the prefix length
as described before. For example, we have two IPv6 classification rules, R; =
(3ffe:3600:B::/48, 3ffe:3600::/32) and R, = (3ffe:3600::/32, 3ffe:3600:1::/48); where R; is
with higher priority level. If R; is placed in front of R,, then the packets with
source/destination addresses within in the range (3ffe:3600:B::/48, 3ffe:3600:1::/48)
always match with R;. Nevertheless, those packets should match with R,. The key matched
3ffe:3600:B::/48 should also match 3ffe:3600::/32. If 3ffe:3600::/32 is placed in front of
3ffe:3600:B::/48, then 3ffe:3600:B::/48 will never be selected. Consequently, for
multi-TCAM system, it is interesting that the entries in each TCAM should be sorted
according to the prefix lengths, instead of priority levels.

2.4. Translating Ranges to Prefixes

It is clear that an IP address can be stored in the TCAM by using the format of
prefix/subnet mask. But typically, SRC port and DST port are often set as ranges. For
example, in the typical rules for firewall shown in Figure 2, The SRC-port and DST-port
for the first rule are set as ranges. Since it is possible that a rule is extended as several rules
after the translation of a range into a set of prefixes, it is very crucial to have an efficient
translating algorithm. This section presents a fast algorithm to translate a range into a set of
minimum number of prefixes.



ARC-address | DiaT-address Protocal ARC-port DETpat ACTION
140,114 * * 140112 % * TCF 20-21 Gl 024 P asg
140,114 * * 140113 % * Jop 20 ANY P asg
1401147250 (1401146471 ANY ANY ANY Black

Figure 2. An example of firewall rules with ranges.

For illustration, let us take a five-bit range for example. The range (2, 11) could be
partitioned into (2,3), (4,7), and (8,11) which can be presented by three prefixes (0001%*),
(001**), and (010**), respectively as shown in Figure 3(b). Figure 3(a) shows another
example with range (4,27) which can be translated into a set of four prefixes (001**,
01***, 10***, 110**). Let L, M, N represent the number of prefixes translated from the
SRC-port, DST-port, and protocol fields respectively, of a rule. Then a rule can be
translated into L*M*N rules, such that each field for each of these rules is presented by a
prefix. For example, consider a rule with SRC-port = (4, 27) and DST-port = (2,11) as
shown in Figure 3, then this rule can be translated into 4x3 = 12 rules as shown in Figure
3(c).

2.5. Range Translation

As shown in Figure 4, the policy rules are set through web-based interface. When a
connection is established, the TCAM management program picks up a rule for this
connection and downloads the rule into the TCAM. As the SRC and/or DST ports may be
set as ranges in the rule, it is required to translate the rule into a set of rules with prefix
format before downloading.

The task of translating a range (X,Y), say (4,15), is to convert the range into a set of
binary prefixes. Let us again take five-bit prefixes for instance. Figure 4 shows the range
translating procedure. Let the Left point and Right point stand for X (4) and Y (15),
respectively. Then we can find the Separate-point (SP) by first performing the XOR
operation on the binary presentations of X (00100) and Y (01111). Thus, Z = (X XOR Y) =
(01011). Let the LSB of Z be numbered as 0-th bit and the MSB of Z be numbered as 4-th
bit. Then start from the MSB of Z, let the position where bit transition happens be denoted
as k-th bit. For this case, we have k = 3 (“0” = “1” happens). Let W be the number which
all bits are “1” except the right most k bits are “0”. For this case, we have W = 11000. Then
let SP = (Y AND W) = (01111 AND 11000) = (01000).



Range | Prefixes Range | Prefixes
4,7) 001** (2,3) | 0001*
(8,15) | Q1 4,7 001**

(16, 23)| 10*** (8,11) | 010**

(24, 27)| 110%
(a)SRC Range (4, 27) (b)DST Range (2, 11)

SRC Ranges |DST Ranges |SRC and DST Prefixes
4,7 (2,3) 001** : 0001*
(4,7) (4,7) 001** : 001**
4,7 (8, 11) 001** : 010**
(8, 15) (2,3) 01***:0001*
(8, 15) 4,7) 01*** : QO1**
(8, 15) (8, 15) 01*** : 010**
(16, 23) (2,3) 10*** : 0001*
(16, 23) 4,7 10*** : 001**
(16, 23) (8,15) 10*** : 010**
(24, 27) (2,3) 110** : 0001*
(24, 27) 4,7 110** : 001**
(24, 27) (8,15) 110** : 010**

(C) Translated SRC and DST prefixes

Figure 3. Example of five-bit prefixes stored in the TCAM.

<—— Right
Move

Figure 4. Diagram of range translating procedure.




The left part (4-7) and right part (8-15) of the SP then be processed individually. For
the left part, let us start from the smallest element S, of left part (4 in this case). Let w; be
the number of consecutive “0”s from the LSB of S,. For this case, we have w_ = 2. Let W_
be the number which all bits are “0”’s except the right most m_ = min(w k) bits are “1”s. In
this case, we have m_ = min(w,k) = (2,3) = 2, and W_ = 00011. Let M. = (S. OR W,) be
the merge point of S.. In this case, we have M, = (00100 OR 00011) = 00111. Then the
elements located between S_and M, can be merged (presented) as a prefix P(S.) which is
the same as S except the right most m_ bits are expressed as ‘*’. For this case, we have
P(SL) = 001**.

On the other hand, for the right part, let us start from the largest element L of right
part (15 in this case). Let wg be the number of consecutive “1” from the LSB of Lg. For this
case, we have wg = 4. Let Wg be the number which all bits are “1”s except the right most
mgr = min(wg,k) bits are “0”s. In this case, we have mg = min(wg,k) = (4,3) = 3, and Wg =
11000. Let Mg = (Wgr AND Lg) be the merge point of Lg. In this case, we have Mg = (11000
AND 01111) = 01000. Then the elements located between Mg and Lg can be merged
(presented) as a prefix P(Lg) which is the same as Lr except the right most mg bits are
expressed as “*’. For this case, we have P(Lg) = 01***,

Let us illustrate this idea more clearly by an example shown in Figure 5, where a
range (4,27) is translated into a set of four prefixes step by step. Initially, the SP is
computed first. As (00100 XOR 11011) = 11111, we have k = 4, and W = 10000. SP =
(11011 AND 10000) = 10000 (16). For the left part elements, let us start from the smallest
element S; (4). Then we have w_ = 2, m_ = min(wy,k) = (2,4) = 2, and W_ = 00011. Let M.
= (SL OR W\) = (00100 OR 00011) = 00111. Then the elements located between S_and M,
can be merged (presented) as a prefix P(S.) = 001** (the 1% generated prefix). Then let the
next smallest un-processed left elements be S, again (for this case, S. = 8 = 01000). Then
we have wy = 3, m_ = min(w.,k) = (3,4) = 3, and W, = 00111. Let M_ = (S. OR W) =
(01000 OR 00111) = 01111. Then the elements located between S, and M, can be merged
(presented) as a prefix P(S.) = 01*** (the 2" generated prefix).

For the right part elements, let us start from the largest element L of right part (27 =
11011 in this case). Then we have wg = 2, mg = min(wg,k) = (2,4) = 2, and Wg = 11100. Let
Mg = (Wgr AND Lg) = (11100 AND 11011) = 11000. Then the elements located between Mg
and L can be merged as a prefix P(Lg) = 110** (the 3" generated prefix). Then let the next
largest un-processed right element be Lg again (for this case, Lg = 23 = 10111). Then we
have wg = 3, mg = min(wg,k) = (3,4) = 3, and Wg = 11000. Let Mg = (Wg AND Lg) =
(11000 AND 10111) = 10000. Then the elements located between Mg and Lr can be
presented as a prefix P(Lg) = 10*** (the 4™ generated prefix). Finally, we can see that the



range (4,27) can be expressed by a set of four prefixes (001**, 01***, 10***, 110**).

Range 4 ~ 27

Level 5

Level 4

Level 3

Level 2 __Merge Poin mmmy . Merge Point

Level 1

1

Level O

Lett Right

Generate Generate
Prefix Prefix

Prefix = 001** (D) Prefix = 110*+ (3

Move to Next Move to Next
Range Range

Right

Prefix = 01*** (2) Prefix = 10%* (3)
End Procedure End Procedure

Figure 5. Translate range (4,27) into a set of four prefixes.

The proposed translation algorithm is presented as follows. First of all, the algorithm
finds the SP of the input range (X, Y). Then check if the input range (X,Y) can be merged
into a single prefix directly. If yes, then the algorithm returns the prefix and stops.
Otherwise, the algorithm translates the left part elements and right part elements of the SP
individually according to the procedure mentioned above.

2.6. Range Translation Algorithm
Algorithm Range2Prefix

Input: A range (X,Y)

Output: A set of translated prefixes for (X,Y)

Step 1. Find the Separate-Point (SP) of (X,Y).
Let Z = (X XOR Y). Start from the MSB of Z, let k be the first bit position where bit
transition happens.
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Step 2. Check if the (X,Y) can be merged into a single prefix directly. If yes, then return the
prefix and Stop.
Step 3. //Translate left part elements
Let S. be the smallest un-processed element of left part.
Let w. be the number of consecutive ““0” from the LSB of S,
m = min(wy,k);
Let W, be the number which all bits are ““0”” except the right most m_ bits are “1”.
Let M. = (SL. OR W\) be the merge point of S.
Output a prefix P(S.) which is the same as S, except the right most m,_ bits are expressed as
Ces
If M. =SP-1, then go to Step 3.
Step 4. //Translate right part elements
Let Lr be the largest un-processed element of right part.
Let wg be the number of consecutive ““1”” from the LSB of Lg
Mg = min(wg,k);
Let Wr be the number which all bits are *““1”” except the right most mg bits are “0”’.
Let Mg = (Wgr AND Lg) be the merge point of Lg.
Output a prefix P(Lg) which is the same as Lr except the right most mg bits are expressed
as “*’.
If Mg = SP, then go to Step 4.
Setp 5. Stop.

11



3. PROPOSED MULTI-TCAM SOLUTIONS

To cope with various QoS requirements and obtain wire-speed switching, our research
proposes a classification co-processor performing constant-time classification for network
processor-based platforms. Most control units break incoming packets into fixed-size
segments; hence two classification scenarios exist in the network processor-based
platforms. One scenario is NPU performs packet classification while receiving
start-of-packet (SOP) signal, the other is NPU does not classify the packet until receive
entire packet. The lookup operations of these two scenarios are significantly different. As
the header information refers to several segments in the first scenario, NPU performs each
lookup while NPU gets the header information. NPU can acquire the whole searching key
and perform lookup procedure while receiving end-of-packet (EOP) signal. Therefore, our
research proposes two architectures of classification co-processor by utilizing multiple
TCAMs. In the rest of this session, our research first presents two multi-TCAM
architectures for different classification scenarios. Then, our research describes the sorting
scheme in the multi-TCAM systems. Finally, our research shows the ambiguous cases that
may cause the trace-back and mis-match problems.

3.1. Pipeline and Parallel Multi-TCAM Architectures

Since the whole classification procedure includes input, search, and output steps, the
lookup latency is the sum of the delays of all steps. In other words, searching longer policy
table to classify packets takes more time due to the limitation of hardware bus. Take
five-tuple IPv6 packet classification as an example; 304-bit searching key should be
inputted 5 times on 72-bit data bus. To improve the throughput of packet classification, our
research proposes pipeline architecture utilizing multiple TCAMSs for the first scenario.
This architecture shown in Figure 6 is able to output a result every four clock-cycles with
pipeline process.

For the first scenario, FPGA controller is responsible for inputting searching keys,
handling lookup procedures, and finally outputting the lookup results. TCAMs are used to
store the policy table. Three TCAMs store IPv6 source addresses, IPv6 destination
addresses, and information of protocols and ports respectively. In our design, the TCAM-3
also stores the action table. In the first searching step, TCAM-1 outputs the associated tag,
and the FPGA controller combines the tag with second searching key (IPv6 destination
address) to perform second search. After that, TCAM-2 outputs the second tag and FPGA
controller combines the tag with third key (ports and protocol) to perform third search.
Finally, TCAM-3 outputs the lookup result. This lookup procedure can be pipeline
executed. Taking advantage of pipeline process, the proposed classification can output one
result every four clock-cycles at full rate.
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In the second scenario, the classifier can get the whole packet information. Thus, our
research proposes the parallel architecture to employ multiple TCAMs and increase lookup
speed. The architecture of proposed parallel multi-TCAM classification engine is shown in
Figure 7. After NPU acquires the whole searching keys, NPU inputs the keys through
FPGA controller. Then, all TCAMs execute the lookup procedure simultaneously and
produce the associated indexes. Afterwards, the classifier combines all associated indexes
and sends to the Binary CAM to perform hash operation. Eventually, FPGA controller
replies the result to NPU. The proposed architecture can simultaneously search all fields
and get a result after four clock-cycles.

Input Output

Il r

Classification Engine
(FPGA Controller)

72 1‘ Databus 72 1‘ 72 1‘

TCAM-1 TCAM-2 Yaanit
144-bit Addr 144-bit Addr Protocol and
(SRC) (DST)
Ports

Figure 6. The pipeline architecture of proposed Classification Engine.

Since TCAM performs ternary (0, 1, and don’t care) searching, multiple matches may
exist in TCAMs. Although TCAM always selects the index with longest prefix length, not
all fields of highest policy rule has longest prefix length. Therefore, selecting the accurate
index is critical.

3.2. Sorting in Multi-TCAM Systems

Ternary CAM is adept at performing longest prefix match (LPM) to find out the best
route for Layer-3 IP lookup. In other words, the data should be sorted before stored into
TCAM, and TCAM selects the best-matched rule according to the priority. For Layer-3
lookup, routes are sorted by using their prefix lengths, and rules are sorted by their
priorities for Layer-4 classification. Our research employs multiple TCAMs in pipeline and
parallel architectures increasing the throughput of packet classification. Since each TCAM
stores just one field such as source or destination IPv6 address, sorting in each TCAM is
according to the prefix length. For example, two rules- Riand R,, R is (3ffe:3600:B::/48,
3ffe:3600::/32) and R; is (3ffe:3600::/32, 3ffe:3600:1::/48); R; has higher priority than R,.
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If Ry is put in front of R, along the priority, then the packets in the range (3ffe:3600:B::/48,
3ffe:3600:1::/48) always matches R;. Nevertheless, the packets within this range should
match R,. The key matched 3ffe:3600:B::/48 should also match 3ffe:3600::/32. If
3ffe:3600::/32 is put in front of 3ffe:3600:B::/48, then 3ffe:3600:B::/48 is never selected.
Accordingly, for multi-TCAM system, the entries in each TCAM should be sorted along
the prefix length, instead of priority.

Input Output

JL 1r

Classification Engine
(FPGA Controller)

72 L Databus 72 L

1

TCAM-1 TCAM-2 Tliﬁm_its
144-bit Addr 144-bit Addr Protocol and
(SRC) (bST) Ports
Binary CAM

Figure 7. The parallel architecture of proposed Classification Engine.
3.3. Trace-back and Mis-match Problems

To furnish fast and scalable classification engines, the proposed scheme has to
eliminate undesirable factors for smoothly executing pipeline and parallel classification.
Take the pipeline architecture as an example, if any one TCAM selects incorrect index, the
classification procedure would occur error. Then the procedure must go back to previous
TCAM and search again. Thus, in this case, classification procedure might spend extra
time to lookup and fail to obtain the index at constant-time. The problem that causes extra
actions is called the trace-back problem. On the other hand, while executing the parallel
classification, all TCAMSs must simultaneously select an associated index for Binary CAM
(BCAM) to execute the hash operation. However, if any TCAM selects incorrect index,
then BCAM could not output the accurate result. We define this situation as a mis-match
problem. Consequently, the factors of trace-back problem and mis-match problem in
multi-TCAM system should be eliminated to ensure fast packet classification.

In our research, we define the ambiguous cases between two rules, and these two
rules would cause trace-back and mis-match problems. The ambiguous cases between two
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rules have been presented in previous articles [19-20]. These articles present that two rules
contains ambiguous cases if they are overlapped, but the relations of policy rules in
multi-TCAM systems are not the same. For simplicity, let us use two-field (source and
destination address fields) rules as an example. Consider the relation of six rules shown in
Figure 8. The rules R; and R, are completely disjoined, rules Rz and R, contain an
overlapping area, and Rg is a subset of Rs. For instance, consider the rules Rs and Rg shown
in Figure 8. Since both the source and destination fields of rule Rg have longer prefix
length than those of rule Rs, we say that Rg is a subset of Rs. For this case, it is clear that Rg
should have a higher priority than Rs. Otherwise, rule Rg will never have the chance to be
matched. In this case, we can just set Rg higher than Rs in all TCAMSs. On the other hand,
the source field of R, is a subset of Ry. If lookup source field first, R; is always selected. If
the key is matched Ry, this case causes the trace-back problem. Since Layer-4 packet
classification lookups multiple fields, the priority between two rules in the classification
table should be arranged more carefully.

2128 A R5

SRC

Disjoin Partial Overlap Fully Overlap

[

DST 2128

Figure 8. Relationships between six two-field rules.

To sum up, our research defines two ambiguous cases that cause two rules R; and R;
ambiguous in multi-TCAM environments. The first one is when there exists one field of R;
Is a subset of R; and one field of R; is a subset of R;. The first ambiguous case is also called
conflict rules in literature [19]. The second case is that there is one overlapped field and
one disjoined field between R; and R;. In case the TCAM contains conflict rules, then it is
difficult for TCAM to select the best-matched rule by only according to the prefix length.
Searching each field sequentially may suffer second ambiguous case. Since all fields
should be matched at the same time, to decide the best selection by LPM in one
TCAM/field is inappropriate. In other words, if the TCAM selects a wrong entry for the
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first field and lookups the second field, then this will cause a trace-back [21] search.

Obviously, TCAM-classification might not work well if exists ambiguous rules. The
ambiguous cases in multi-TCAM environments are defined in the following section. The
detection and resolution algorithms for this problem are also introduced as well.

3.4. Comparisons of Proposed Multi-TCAM Solutions

To conclude this section, we compare the proposed pipeline and parallel multi-TCAM
solutions and depict their characteristics in Table 1. In the pipeline solution, the NPU
performs classification while receiving start-of-packet (SOP) signal. In parallel solution,
the NPU does not classify the packet until receives end-of-packet (EOP) signal. Thus the
pipeline solution is suitable for applying on the classification algorithm that lookup each
field at each step. On the other hand, the parallel solution is suitable for the algorithm that
takes the whole header information to lookup. Looking into the hardware specification,
both of these two solutions consist of a FPGA controller and three 144-bit-width TCAMs.
Besides, parallel solution has an extra Binary CAM to perform hashing function and select
the result. Since parallel solution has one extra BCAM, pipeline solution is cheaper than
parallel solution. Considering the classification latency, the pipeline solution performs
three-step lookup operations and each step takes 4 clock cycles to get a result. Thus, the
whole lookup procedure takes total 12 clock cycles. By contrast, parallel solution takes 4
clock cycles to perform one lookup procedure. Nevertheless, the throughputs of these two
solutions are the same.

Table 1. Comparison of characteristics with pipeline and parallel Multi-TCAMs.

Items Pipeline Architecture |Parallel Architecture

Classification

When receiving SOP

When receiving EOP

# of FPGA 1 1
# of TCAM 3 3
# of Binary CAM 0 1

Classification Latency

12 clock cycles

4 clock cycles

Throughput

1 per 4 clock cycles

1 per 4 clock cycles

Problem

Trace-back

Mis-match

Both pipeline and parallel solutions can improve the throughput and the scalability for
wide policy table lookup. However, the trace-back and mis-match problems may block the
pipeline and parallel processes. Since the ambiguous cases in multi-TCAM systems causes
these two problems, the proposed classification engine can obtain fast and scalable lookup
as long as removing the ambiguous cases. Therefore, our research introduces the
ambiguous cases and presents the solutions in the next session.
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4. HANDLING AMBIGUOUS CASES

To provide pipeline and parallel processes for multi-TCAM systems, the trace-back
and mis-match problems must be removed. Previous article [20] has proposed that if two
rules contain any overlap region, then these two rules are ambiguous and may cause
trace-back problem in multi-TCAM systems. By this definition, (Rs, Rg) and (Rs, Rs) in
Figure 8 are ambiguous rules. However, since all entries in each TCAM are sorted by
prefix length, Rs and Rg can be distinguished by prefix length. On the other hand, although
R; and R; are disjoined in Figure 8, the source fields of these two rules are overlapped. Ry
and R, are ambiguous when lookup the source field first. Hence, our research presents two
ambiguous cases that cause trace-back and mis-match problems in multi-TCAM systems.
Finally, our research shows the solutions of detecting and solving these cases in the rest of
this session.

4.1. Ambiguous Cases in Multi-TCAM Environments

All entries are represented as prefixes in TCAM (ranges can also be translated to
prefixes), so the relation between the same field of two rules can be classified as subset,
super-set, or disjoin. To clarify, let R, and R be the i-th field of rules A and B,
respectively. Then R, cR. to denote that Rjis a subset of R}, and R)®R;to denote
that R,and Ry are disjoined. The ambiguous cases in multi-TCAM systems are defined
as follows, and for simplification, our research takes two five-bit fields for example:

Case I: Overlapping Rules

In the first case, rules A and B are overlapped if there exists R,cR; and RJcR],
where i = j. Take Figure 8 as an example again and assume the priority of R3 is higher than
that of R4. In single-TCAM environment, this is a simple case and what we should do is to
put Rz on a higher position than R, in the rule table. Nevertheless, in multi-TCAM
environment, each field (a TCAM) should be sorted by prefix length. Taking two
conflicting rules, (10***, *****) gnd (***** 101**), for instance, these rules are
overlapped in the area (10***, 101*%*).

Case I1: Hidden Overlapped Rules

The second case is that rules A and B are hidden overlapped if there exists some
fieldR, cRL and for other fields R)® R/}, where i # j. For instance, the rules R; and R; in
Figure 8 are hidden overlapped. As for the source field, R, is a subset of R;. But for the
destination field, they are disjoined in Figure 8. Actually, for single-TCAM systems, R;
and R, are completely disjoined. However, in the multi-TCAM systems, each field is stored
in one TCAM and the packet classification algorithm compares one field each step. In this
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case, it is possible that while searching the source field in the first TCAM, and a wrong
rule may be selected according to the longest prefix match algorithm. As a result, the
packet classifiers should trace-back and retry several times. This trace-back scheme is
undesirable since it would take various delays to select the best rule. The proposed method
Is to insert a new rule into the rule table to resolve this ambiguous problem and obtain
constant-time lookup.

Take R1=(10***,11***) and R,=(101**,10***) for example, Ry and R cause a hidden
overlapped case in a two-TCAM system. When a packet with (source, destination) =
(10110, 11100) comes in, and the classifier takes the source field as the search key. The
classifier selects R, with the longest prefix matching. However, when destination field
(another TCAM) fails in searching, another entry in source field should be search again.

4.2. Detecting and Resolving Conflict rules

According to above mention, there are two kinds of conflicts (overlapped and hidden
overlapped) among the rules in the multi-TCAM systems. This section proposes the ways
to detect and resolve these ambiguous cases.

Solution for Case I:

In the first case, two rules A and B are ambiguous, if there exists R,cR} and
Ry R}, where i #j. The longest prefix match algorithm is unable to select the correct rule
merely according to the prefix length.

The detecting procedure first distinguishes if all fields of two rules A and B are
disjoined. Disjoin rules are undoubtedly not conflicted. If rule A and B are not disjoined
but A is a subset of B or B is a subset of A, then A and B can be distinguished successfully
by prefix length. The rest of the detecting procedure checks the subset relation of all fields
of rule A and B.

The solution for this conflict case is to add a new rule C, in which each field of C is
the longer prefix of rules A and B. This resolving algorithm should be recursively executed.
After adjusting, the packets belongs to overlapping area will match rule C by LPM.

Solution for Case I1:

Two rules A and B have ambiguous case 2, if there exists some field R, c R} and for
other fields R)®R/, where i # j. The detecting procedure first distinguishes if two rules A
and B are hidden overlapped. If rule A and B are hidden overlapped as for the source field,
B is a subset of A, but for the destination field, they are disjoined. The detecting procedure
of hidden overlapped rules only exists in the multi-TCAM systems as each field is stored
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in one TCAM and the packet classification algorithm compares one field at each step.

Similar to case I, the solution for this conflict is to add a new rule C in the rule table.
The source field of rule C is the longer prefix length of the source field of rules A and B;
however, the destination field is referred to the shorter prefix length destination field of
rule A and B. After inserting rule C, the packet will match this new rule. Though this
scheme inserts additional rules, it keeps the advantage of constant searching time for all
cases.

4.3. Lookup Operations Without Ambiguous Cases

After detecting and resolving the ambiguous cases, the pipeline and parallel
multi-TCAM system will not encounter trace-back and mis-match problems. In other
words, the proposed multi-TCAM classification engine can take advantage of the benefits
of pipeline and parallel architecture and enhance the lookup speed. The following contents
give two examples for pipeline and parallel architectures individually.

To simplify the demonstration, we utilize two fields to show the lookup operations
and point out the difference between original and modified policy tables. Figure 9 shows
the first example for pipeline architecture. There are two rules that
R1(140.114.78.%,140.114.*.*) and R,(140.114.*.*,140.114.79.*) in the policy table, and R;
has higher priority than R,. For incoming packet (140.114.78.59,140.114.79.80), TCAM-1
selects longest prefix rules and outputs T1 Then, combine T1 and second key
(140.114.79.80) will not match in TCAM-2 without handling ambiguous rules. In this case,
the trace-back problem occurs and classifier cannot get the correct result. To avoid
trace-back problem, new rule-R; detecting form ambiguous cases is created and inserted
into policy table. The lookup procedure is as the following. First lookup in TCAM-1 also
get the result (T1). Then, TCAM-2 outputs the correct result (Al) after eliminating
ambiguous cases. In addition, the number of rule does not increase in TCAM-1 since the
same data entries can be compacted with the same tag. Consequently, the pipeline
architecture can be executed smoothly without the trace back problems.

For the parallel scenario shown in Figure 10, the policy rules are divided into two
parts and store in TCAM-1 and TCAM-2. BCAM is a hash table and stores hash keys for
policy rules. Classification engine inputs the searching keys into TCAMs concurrently and
output the associated index. By combining the outputs from TCAM as a hash key, BCAM
can lookup and output the correct result.

Originallyy, TCAM-1 and TCAM-2 output associated indexes (X1 and Y?2)
respectively. However, inputting the combination of X1 and Y2 will not match in the
BCAM hashing. After the modification, only BCAM inserts a new hashing entry and
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TCAMSs make no change. Although TCAMs still output X1 and Y2, BCAM can extract the
correct result after removing the mis-match problem.

Original Policy Table

Item Source Destination Result
R1 140.114.78.* 140.114.*.* Al
R2 140.114.*.* 140.114.79.* A2
TCAM-1
Prefix Result
140.114.78.* T1 T1
140.114.* * T2
TCAM-2
Prefix Result \
T2+140.114.79.% A2 * Matoch
T1+140.114.*.* Al
Modified Policy Table
Item Source Destination Result
R1 140.114.78.* 140.114.*.* Al
R2 140.114.*.* 140.114.79.* A2
» R3 140.114.78.* 140.114.79.* Al
TCAM-1
Prefix Result
140.114.78.* T1 » T1
140.114.*.* T2
TCAM-2
Prefix Result
T2+140.114.79.* A2
T1+140.114.79.* Al » Al
T1+140.114.*.* Al

Figure 9. Lookup operations of the pipeline architecture.
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Original Policy Table

Item Source Destination Result
R1 140.114.78.* 140.114 * * Al
R2 140.114 ** 140.114.79.* A2
TCAM-1 TCAM-2
Prefix Result Prefix Result
140.114.78.* X1 T2+140.114.79.* Y2
140.114 * * X2 T1+140.114.*%* Y1
X1 Y2
BCAM
Prefix Result
X1+Y1 Al
X2+Y2 A2
No Match
Modified Policy Table
Item Source Destination Result
R1 140.114.78.* 140.114 * * Al
R2 140.114 * * 140.114.79.* A2
* R3 140.114.78.* 140.114.79.* Al
TCAM-1 TCAM-2
Prefix Result Prefix Result
140.114.78.* X1 T2+140.114.79.* Y2
140.114 * * X2 T1+140.114.** Y1
X1 Y2
BCAM
Prefix Result
X1+Y1 Al
X2+Y2 A2
» X1+Y2 Al
Al

Figure 10. Lookup operations of the parallel architecture.
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5. IMPLEMENTATION AND PERFORMANCE EVALUATION

Network processors [22-24] with flexibility, high performance, and rich set of APIs
furnish good platforms to build up a QoS supported high-speed switches. However,
network processors hardly provide enough computing power for more QoS requirement
while scaling to 10 Gbps. Take Intel IXP1200 as an example, pure software-based packet
processing requires roughly 700 instructions. Therefore, the classification not only
consumes most computing power but also produces extra latency and delay jitter, which
may affect real-time traffic. Our research proposes a classification co-processor with
multiple TCAMs to share the NPU’s loading and classify packets within constant latency.

Table 2 shows the comparison of single-TCAM systems [19], [21], [25-28] and
multi-TCAM systems. Since commercial TCAM [6-9] has hardware limitation, single
TCAM can only be configured to 72-, 144-, 288-bit widths and takes more time to input
longer policy rules. On the other hand, multi-TCAM classification engine would be more
scalable, fast and cost efficient than single-TCAM system. Furthermore, taking advantage
of pipeline, outputting the 304-bit IPv6 packets classification result only requires 4 clock
cycles for multiple TCAM systems. Obviously, due to smoothly executing pipeline
procedure, multi-TCAM classifier is faster than single TCAM classifier. Since lookup
procedure of single-TCAM system totally takes 7 clocks, the maximum speed of
single-TCAM system can only reach 7Gbps with 100MHz TCAM and 64-byte packets. On
the other hand, the pipeline and parallel solutions can output one result every 4 clocks. The
maximum speed of proposed classification engine can achieve wire-speed deep packet
inspection at 10Gbps.

Table 2. Comparison of single-TCAM and multi-TCAM classification engine.

Items Single TCAM Multiple TCAMs
Scalability No Yes
Cost High Low
Power Consumption High Low
Throughput 1 result per 7 clocks 1 result per 4 clocks
Max Speed 7Gbps 12Ghps

In our implementation, Verilog is used to develop the FPGA controller in Max Plus 11
software; the Altera FPGA (EPF10K200EBC600-1) controller and Network Search Engine
(NSE3128, TCAM) of Netlogic Microelectronics Inc. [8] are employed. The simulation
results in Max Plus Il show that the FPGA controller can obtain 33-45Mhz, thus each clock
cycle takes 22ns-33ns. Due to the width limitation of data-bus, the entire lookup procedure
for 304-bit field totally takes 7 clock cycles. Applying proposed pipeline and parallel
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architectures, each result is generated in every 132ns (4*33ns). Figure 11 shows the
evaluation for pipeline architecture. This pipeline process furnishes 8-million packet
classifications per second. In other words, this implementation has the ability to handle 4
gigabits per second in the evaluation systems when packet length is 64 bytes (minimum
length for Ethernet packets). Similarly, parallel architecture can also reach the same speed.
The proposed hardware classification engine can perform wire-speed lookup at 10 Gbps as
long as replacing the FPGA controller with 100MHz chip.

| Clock_| I I I I I I I I I I I I I I I I I I I
[ Cycle | I I I I I I I I I I I I I I I I I I I

|TCAM-1 | TCAM-1| Lookup | Tagl |TCAM 2 | TCAM-2| Lookup | Tag2 |TCAM 3 | TCAM-3 | Lookup | Result |
[T72H | 72 | [ 72H | 72L | [ 72H | 72L | [

|TCAM-1 | TCAM-1| Lookup | Tagl |TCAM-2 | TCAM-2 | Lookup | Tag2 |TCAM-3 | TCAM-3| Lookup | Result |
[ 724 | 720 | | [ 720 T 720 ] | [ 720 T 720 ]

|TCAM-1 | TCAM-1 | Lookup | Tagl |TCAM-2 |TCAM-2| Lookup | Tag2 |TCAM-3 | TCAM-3| Lookup | Result |
[T72H [ 72 | [ [~ 720 | 72 | [ [~ 720 | 72 | | |

[t i be——————>{ |
4 Clock Cycles 4 Clock Cycles

Figure 11. Evaluation of performance of the pipeline multi-TCAM architecture.

In order to increase the throughput of classification, our research proposes the
pipeline and parallel hardware architectures. To perform pipeline lookup procedure, the
trace-back and mis-match problems must be eliminated. Although the proposed algorithm
solves the trace-back and mis-match problems, inserting rules may cause the rule table of
TCAM to grow up in pipeline architecture. On the contrary, TCAMs make no changes in
the parallel architecture. Therefore, our research presents a compact method capable of
merging TCAM data entries for pipeline architecture.

Table 3. Comparison of number of original rules and TCAM rules.

Original rules Max TCAM Rules |Compact Rules
100 100 95

1,000 1,002 992

10,000 10,263 10,006

50,000 50,914 50,045

We simulated the varied rule table sizes from 100 to 50,000 rules by using randomly
generated rules, the compact result is shown in Table 3. Due to extra rules, the maximum
number of TCAM entries is more than original rule number. For the pipeline lookup
procedure, there are two cases that TCAM data entries can be compacted. The former case
is R,cRL for all i, and the action of these two rules are the same. In this case, Ry is a
redundant rule and Rg can represent Raand Rg. The later case is R, =R} for any field, and
then these two data entries can be merged even they are belong to different rules. Finally,
the size of policy rules decreases and does not increase exponentially after compacting.
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6. CONCLUSION

To provide wire-speed classification for multi-service switches at 10Gbps, our
research proposes pipeline and parallel architectures employing multiple TCAMs to obtain
wire-speed classification for IPv6 and multi-layer applications. To maintain pipeline and
parallel process, our research proposes an algorithm to resolve ambiguous cases and a
compact method to reduce the memory requirements of TCAMs.

By applying above mechanisms, the proposed classification engine can classify
packets every four clock-cycles. In other words, this classification engine can obtain 12
Gbps with minimum length of Ethernet packets by employing 100 MHz TCAMs. In
addition, the proposed classification engine is scalable for various QoS requirements by
extending FPGA controller and number of TCAMSs. Therefore, the proposed classification
engine furnishes not only the much fast wide policy table lookup but also more scalability
on ultra-high speed switch design.
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