明新科技大學 97 校內專題研究計畫成果報告

纖維水解菌株篩選、水解酵素分離純化、與酵素生產生質 酒精製程最適化探討

計畫類別: □整合型計畫 ⊠個人計畫

計畫編號: MUST-97 化工-05

執行期間: 97年 3 月 1 日至 97年 9 月 30 日

計畫主持人:王峻賢

計畫參與人員:柯宗宏、馬金君、陳瑜芳、

古品君、葉虹秀、李伯泉

處理方式:除涉及專利或其他智慧財產權外得立即公開, 唯必要時本校得展延發表時限。

☑可立即對外提供參考

(請打√) □一年後可對外提供參考 □兩年後可對外提供參考

執行單位:明新科技大學化學工程系

中華民國 97 年 10 月 30 日

明新科技大學

化學工程系

專題研究報告

題目:纖維水解菌株篩選、水解酵素分離純化、與酵素生產 生質酒精製程最適化探討

計畫主持人:王峻賢 副教授

計畫參與人員:柯宗宏、馬金君、陳瑜芳

、古品君、葉虹秀、李伯泉

中華民國九十七年十月三十日

6.1.1.4 40g/L 葡萄糖批次實驗數據	. 21
6.1.1.5 50g/L 葡萄糖批次實驗數據	. 22
6.1.1.6 60g/L 葡萄糖批次實驗數據	. 23
6.1.1.7 70g/L 葡萄糖批次實驗數據	. 24
6.1.1.8 80g/L 葡萄糖批次實驗數據	. 25
6.1.1.9 90g/L 葡萄糖批次實驗數據	. 26
6.1.1.10 100g/L 葡萄糖批次實驗數據	. 27
6.1.2 20°C 之動力學模式	. 28
6.2.1 pH = 5.1, 22.5°C 下黑麴菌	. 29
6.2.1.1 22.5°C, 10g/L 葡萄糖批次實驗數據	. 29
6.2.1.2 22.5°C, 20g/L 葡萄糖批次實驗數據	. 30
6.2.1.3 22.5°C, 40g/L 葡萄糖批次實驗數據	. 31
6.2.1.4 22.5°C, 70g/L 葡萄糖批次實驗數據	. 32
6.2.1.5 22.5°C, 100g/L 葡萄糖批次實驗數據	. 33
6.2.2 22.5℃之動力學模式	. 34
6.3.1 pH = 5.1, 25°C 下黑麴菌温度效應	. 35
6.3.1.1 25°C, 10g/L 葡萄糖批次實驗數據	. 35
6.3.1.2 25°C, 20g/L 葡萄糖批次實驗數據	. 36
6.3.1.3 25°C, 40g/L 葡萄糖批次實驗數據	. 37
6.3.1.4 25°C, 70g/L 葡萄糖批次實驗數據	. 38
6.3.1.5 25°C, 100g/L 葡萄糖批次實驗數據	. 39
6.3.2 25℃之動力學模式	. 40
6.4.1 pH=5.1, 27.5°C下黑麴菌温度效應	. 41
6.4.1.1 27.5°C, 10g/L 葡萄糖批次實驗數據	. 41
6.4.1.2 27.5°C, 20g/L 葡萄糖批次實驗數據	. 42
6.4.1.3 27.5°C, 40g/L 葡萄糖批次實驗數據	. 43
6.4.1.4 27.5°C, 70g/L 葡萄糖批次實驗數據	. 44
6.4.1.5 27.5°C, 100g/L 葡萄糖批次實驗數據	. 45
6.4.2 27.5℃之動力學模式	. 46
6.5.1 pH = 5.1, 30°C 下黑麴菌温度效應	. 47
6.5.1.1 30°C, 10g/L 葡萄糖批次實驗數據	. 47
6.5.1.2 30°C, 20g/L 葡萄糖批次實驗數據	. 48
6.5.1.3 30°C, 40g/L 葡萄糖批次實驗數據	. 49
6.5.1.4 30°C, 70g/L 葡萄糖批次實驗數據	. 50
6.5.1.5 30°C, 100g/L 葡萄糖批次實驗數據	. 51
6.5.2 30°C之動力學模式	. 52
6.6.1 pH = 5.1, 35℃下黑麴菌温度效應	. 53
6.6.1.1 35°C, 10g/L 葡萄糖批次實驗數據	. 53

6.6.1.2 35°C, 20g/L 葡萄糖批次實驗數據	54
6.6.1.3 35°C, 40g/L 葡萄糖批次實驗數據	55
6.6.1.4 35°C, 70g/L 葡萄糖批次實驗數據	56
6.6.1.5 35°C, 100g/L 葡萄糖批次實驗數據	57
6.6.2 35℃之動力學模式	58
6.7.1 pH = 5.1, 40°C 下黑麴菌温度效應	59
6.7.1.1 40°C, 10g/L 葡萄糖批次實驗數據	59
6.7.1.2 40°C, 20g/L 葡萄糖批次實驗數據	60
6.7.1.3 40°C, 40g/L 葡萄糖批次實驗數據	61
6.7.1.4 40°C, 70g/L 葡萄糖批次實驗數據	62
6.7.1.5 40°C, 100g/L 葡萄糖批次實驗數據	63
6.7.2 40°C之動力學模式	64
6.7.3 黑麴菌之温度效應	65~66
6.8 黑麴菌之 pH 效應	67
6.8.1 溫度 30°C, 40g/L 葡萄糖下黑麴菌之 pH 效應	67~68
7 實驗結果	69
7.1 醣類分析與測定	69
7.1.1 分析方法	69
7.1.2 實驗儀器	69
7.1.3 分析條件管柱	69
7.1.4 HPLC 操作條件	69
7.1.5 醣類之 HPLC 分析結果	70~78
7.2 酵素分析結果	79
7.2.1 纖維素水解酵素	79
7.2.2 纖維二醣水解酵素	80
7.3 黑麴菌濃度校正曲線	81
8 討論	82
8.1 黑麴菌(BCRC 31494)之比生長動力模式	82
8.1.1 基質濃度效應	
8.1.2 溫度效應	83
8.1.3 pH 效應	83
8.2 黑麴菌最佳生長條件	83
8.3 黑麴菌生長活化能	83
8.4 纖維素水解菌株比生長最佳操作條件	83
8.5 纖維素水解菌株的酵素生產種類	84
8.6 未來纖維素水解酵素生產的研究方向	85
9 結論	86
10 文獻回顧	87

表目錄

表 01	台大森林系張上鎮教授提供之白腐菌菌種名稱與資料	11
表 02	黑麴菌相關資料	
表 03	含纖維素水解酵素的菌株資料庫	12~14
表 04	纖維水解菌株分泌酵素表	15
表 05	本研究選出的纖維水解菌株	16
表 A()1 在 20°C下,基質濃度為 10g/L,黑麴菌成長之動力數據	
表 A()2 在 20°C下,基質濃度為 20g/L,黑麴菌成長之動力數據	19
表 A()3 在 20°C下,基質濃度為 30g/L,黑麴菌成長之動力數據	
表 A()4 在 20°C下,基質濃度為 40g/L,黑麴菌成長之動力數據	
表 A(05 在 20°C下,基質濃度為 50g/L,黑麴菌成長之動力數據	22
表 A()6 在 20°C下,基質濃度為 60g/L,黑麴菌成長之動力數據	
表 A()7 在 20°C下,基質濃度為 70g/L,黑麴菌成長之動力數據	
表 A()8 在 20°C下,基質濃度為 80g/L,黑麴菌成長之動力數據	
表 A(99 在 20°C下,基質濃度為 90g/L,黑麴菌成長之動力數據	
表 A	10 在 20°C下,基質濃度為 100g/L,黑麴菌成長之動力數據	
表 A	1 各濃度下實驗之µ值及 SAS 預測之µ值統整表	
表 B0	 在 22.5℃下,基質濃度 10g/L,黑麴菌成長之動力數據 	
表 B0	2 在 22.5℃下,基質濃度 20g/L,黑麴菌成長之動力數據	30
表 B0	3 在 22.5℃下,基質濃度 30g/L,黑麴菌成長之動力數據	
表 B0	4 在 22.5℃下,基質濃度 70g/L,黑麴菌成長之動力數據	
表 B0	5 在 22.5℃下,基質濃度 100g/L,黑麴菌成長之動力數據	
表 B0	6 在 22.5℃各濃度實驗之µ值及 SAS 預測之µ值統整表	
表 B0	7 在25℃下,基質濃度10g/L,黑麴菌成長之動力數據	
表 B0	8 在 25℃下,基質濃度 20g/L,黑麴菌成長之動力數據	
表 B0	9 在25℃下,基質濃度40g/L,黑麴菌成長之動力數據	
表 B1	0 在 25℃下,基質濃度 70g/L,黑麴菌成長之動力數據	
表 B1	 在 25℃下,基質濃度 100g/L,黑麴菌成長之動力數據 	39
表 B1	2 在25℃下各濃度實驗之µ值及 SAS 預測之µ值統整表	40
表 B1	3 在 27.5℃下,基質濃度 10g/L,黑麴菌成長之動力數據	41
表 B1	4 在 27.5℃下,基質濃度 20g/L,黑麴菌成長之動力數據	
表 B1	5 在 27.5℃下,基質濃度 40g/L,黑麴菌成長之動力數據	
表 B1	6 在 27.5℃下,基質濃度 70g/L,黑麴菌成長之動力數據	44
表 B1	7 在 27.5℃下,基質濃度 100g/L,黑麴菌成長之動力數據	
表 B1	8 在 27.5℃下各濃度實驗之µ值及 SAS 預測之µ值統整表	46
表 B1	9 在 30℃下,基質濃度 10g/L,黑麴菌成長之動力數據	
表 B2	0 在 30℃下,基質濃度 20g/L,黑麴菌成長之動力數據	
表 B2	 在 30℃下,基質濃度 40g/L,黑麴菌成長之動力數據 	49

表 B22	在 30℃下,基質濃度 70g/L,黑麴菌成長之動力數據	50
表 B23	在 30℃下,基質濃度 100g/L,黑麴菌成長之動力數據	51
表 B24	30℃下實驗之µ值及 SAS 預測之µ值統整表	52
表 B25	在 35℃下,基質濃度 10g/L,黑麴菌成長之動力數據	53
表 B26	在 35℃下,基質濃度 20g/L,黑麴菌成長之動力數據	54
表 B27	在 35℃下,基質濃度 40g/L,黑麴菌成長之動力數據	55
表 B28	在 35℃下,基質濃度 70g/L,黑麴菌成長之動力數據	56
表 B29	在35℃下,基質濃度100g/L,黑麴菌成長之動力數據	57
表 B30	35℃下各濃度實驗之µ值及 SAS 預測之µ值統整表	58
表 B31	在 40℃下,基質濃度 10g/L,黑麴菌成長之動力數據	59
表 B32	在 40℃下,基質濃度 20g/L,黑麴菌成長之動力數據	60
表 B33	在 40℃下,基質濃度 40g/L,黑麴菌成長之動力數據	61
表 B34	在 40℃下,基質濃度 70g/L,黑麴菌成長之動力數據	62
表 B35	在 40℃下,基質濃度 100g/L,黑麴菌成長之動力數據	63
表 B36	40℃各濃度下實驗之µ值及 SAS 預測之µ值統整表	64
表 B37	各溫度下,黑麴菌比生長速率與溫度之關係 (lnμvs.1/T)	65
表 B38	各溫度下,黑麴菌比生長速率與溫度之關係 (µ vs. T)	66
表 C01	溫度 30°C, 40g/L 葡萄糖下黑麴菌之 pH 效應	67
表 D01	醣類之 HPLC 分析結果	70
表 E01	黑麴菌利用基質 Glucose 之比生長動力模式參數	82
表 E02	黑麴菌利用基質 Glucose 之比生長的 pH 效應模式參數	83
表 E03	纖維素水解菌株比生長最佳操作條件	84
表 E04	黑麴菌之比生長的 Michaelis pH 函數模式參數	84

圖目錄

啚	01	纖維素酵素水解之詳細反應機構6
啚	02	纖維二醣酵素水解反應機構6
啚	03	纖維素酵素水解之示意圖6
啚	A01	微生物在 20°C, 10g/L 基質濃度(pH=5.0)下,光學密度變化圖 18
啚	A02	微生物在 20°C, 20g/L 基質濃度(pH=5.0)下,光學密度變化圖 19
啚	A03	微生物在 20°C, 30g/L 基質濃度(pH = 5.0)下,光學密度變化圖 20
啚	A04	微生物在 20°C, 40g/L 基質濃度(pH=5.0)下,光學密度變化圖 21
啚	A05	微生物在 20°C, 50g/L 基質濃度(pH = 5.0)下,光學密度變化圖 22
啚	A06	微生物在 20°C, 60g/L 基質濃度(pH = 5.0)下,光學密度變化圖 23
啚	A07	微生物在 20°C, 70g/L 基質濃度(pH=5.0)下,光學密度變化圖 24
啚	A08	微生物在 20°C, 80g/L 基質濃度(pH=5.0)下,光學密度變化圖 28
啚	A09	微生物在 20°C, 90g/L 基質濃度(pH = 5.0)下,光學密度變化圖 26
啚	A10	微生物在 20°C, 100g/L 基質濃度(pH =5.0)下,光學密度變化圖 27
啚	A11	黑麴菌比生長動力模式(Andrews model)圖
啚	B01	微生物在 22.5℃, 10g/L 基質濃度(pH=5.0)下, 光學密度變化圖 29
啚	B02	微生物在 22.5°C, 20g/L 基質濃度(pH=5.0)下, 光學密度變化圖30
啚	B03	微生物在 22.5°C,40g/L 基質濃度(pH=5.0)下,光學密度變化圖31
啚	B04	微生物在 22.5°C, 70g/L 基質濃度(pH=5.0)下,光學密度變化圖 32
啚	B05	微生物在 22.5°C, 100g/L 基質濃度(pH=5.0)下,光學密度變化圖 33
啚	B06	黑麴菌比生長動力模式(Andrews model)圖 34
啚	B07	微生物在 25°C, 10g/L 基質濃度(pH = 5.0)下,光學密度變化圖 35
啚	B08	微生物在 25°C, 20g/L 基質濃度(pH = 5.0)下,光學密度變化圖 36
啚	B09	微生物在 25°C,40g/L 基質濃度(pH=5.0)下,光學密度變化圖 37
啚	B10	微生物在 25°C, 70g/L 基質濃度(pH = 5.0)下,光學密度變化圖 38
啚	B11	微生物在 25°C, 100g/L 基質濃度(pH = 5.0)下,光學密度變化圖 39
啚	B12	黑麴菌比生長動力模式(Andrews model)圖 40
啚	B13	微生物在 27.5°C, 10g/L 基質濃度(pH=5.0)下,光學密度變化圖41
啚	B14	微生物在 27.5°C, 20g/L 基質濃度(pH=5.0)下,光學密度變化圖42
啚	B15	微生物在 27.5°C,40g/L 基質濃度(pH=5.0)下,光學密度變化圖43
啚	B16	微生物在 27.5°C, 70g/L 基質濃度(pH=5.0)下,光學密度變化圖44
啚	B17	微生物在 27.5°C, 100g/L 基質濃度(pH=5.0)下,光學密度變化圖 45
啚	B18	黑麴菌比生長動力模式(Andrews model)圖
啚	B19	微生物在 30°C, 10g/L 基質濃度(pH=5.0)下,光學密度變化圖 47
啚	B20	微生物在 30°C, 20g/L 基質濃度(pH=5.0)下,光學密度變化圖 48
啚	B21	微生物在 30°C,40g/L 基質濃度(pH=5.0)下,光學密度變化圖 49
啚	B22	微生物在 30°C, 70g/L 基質濃度(pH = 5.0)下, 光學密度變化圖 50

啚	B23	微生物在 30°C, 100g/L 基質濃度(pH = 5.0)下, 光學密度變化圖5	1
啚	B24	黑麴菌比生長動力模式(Monod model)圖5	2
啚	B25	微生物在 35°C,10g/L 基質濃度(pH=5.0)下,光學密度變化圖5	3
啚	B26	微生物在 35°C, 20g/L 基質濃度(pH=5.0)下, 光學密度變化圖 5	4
啚	B27	微生物在 35°C,40g/L 基質濃度(pH=5.0)下,光學密度變化圖5	5
啚	B28	微生物在 35°C, 70g/L 基質濃度(pH=5.0)下, 光學密度變化圖 5	6
啚	B29	微生物在 35°C, 100g/L 基質濃度(pH=5.0)下, 光學密度變化圖5	7
啚	B30	黑麴菌比生長動力模式(Andrews model)圖5	8
啚	B31	微生物在 40°C, 10g/L 基質濃度(pH=5.0)下, 光學密度變化圖5	9
啚	B32	微生物在 40°C, 20g/L 基質濃度(pH=5.0)下, 光學密度變化圖6	0
啚	B33	微生物在 40°C, 40g/L 基質濃度(pH=5.0)下, 光學密度變化圖6	1
啚	B34	微生物在 40°C, 70g/L 基質濃度(pH=5.0)下,光學密度變化圖6	2
啚	B35	微生物在 40°C, 100g/L 基質濃度(pH = 5.0)下,光學密度變化圖6	3
啚	B36	黑麴菌比生長動力模式(Andrews model)圖6	4
啚	B37	在 pH= 5.1 下,基質濃度 10~100 g/L 時,黑麴菌比生長速率與溫度	-
		之關係 (ln µ vs. 1/T)6	5
啚	B38	在 pH= 5.1 下,基質濃度 10~100 g/L 時,黑麴菌比生長速率與溫度=	こ
		關係 (µ vs. T)6	6
啚	C01	在溫度 30°C, 40g/L 葡萄糖時,黑麴菌比生長速率之 pH 效應曲線6	8
啚	D01	纖維素水解酵素之濃度校正圖7	9
啚	D02	纖維二醣水解酵素之濃度校正圖8	0
啚	D03	黑麴菌濃度校正曲線圖8	1
啚	E01	黑麴菌比成長速率之基質濃度效應(Andrews model)	2

1.摘要

本實驗利用葡萄糖作為碳源與能源的化學已定義介質,篩選、探討纖維水解 菌株,如黑麴菌(Aspergillus niger)、半知菌木霉(Trichoderma reesei)、黃孢亮光伏 革菌(Phanerochaete chrysosporium)、酵母菌(Saccharomyces cerevisiae)等菌株的生 長動力模式,包括基質濃度(葡萄糖)、溫度和 pH 等效應;以 250mL 錐形瓶為微 型反應器,在乾式恆溫震盪槽中進行批次生長動力研究。

在基質濃度效應方面: 0~180g/L 葡萄糖下,黑麴菌測得比生長速率符合 Andrews 模式所描述之結果。

在 pH 效應方面: 0~180g/L 葡萄糖下,測得黑麴菌、半知菌木霉、黄孢亮光 伏革菌、酵母菌等菌株的比生長速率皆符合 Michaelis pH function 模式所描述之 結果。最佳比生長速率之 pH 值分別為:黑麴菌(pH 5.06)、半知菌木霉(pH 3.95)、 黄孢亮光伏革菌(pH 5.00)、本土根瘤菌(pH 5.85)、與酵母菌(pH 4.33)等結果。

在溫度效應方面:測得黑麴菌、半知菌木霉、黃孢亮光伏革菌、酵母菌等菌株的比生長速率皆符合 Arrhenius Law 模式所描述之結果。最佳比生長速率之溫度值分別為:黑麴菌(27.5℃)、半知菌木霉(30℃)、黃孢亮光伏革菌(30℃)、臺 灣本土根瘤菌(35℃)、與酵母菌(28℃)等結果。而且各菌株的比生長活化能分別 為:黑麴菌(5.377 kcal/gmole) 與臺灣本土根瘤菌(30.5 kcal/gmole)等結果。

此外,也完成單醣與寡醣以及纖維素水解酵素與纖維二醣水解酵素的分析方 法的建立。

關鍵字:比生長速率,非線性迴歸,

2.前言

根據統計,目前全球原油存量僅有約四十年的使用期限,因此世界各國 皆緊迫地集中研究能量,尋求替代能源/可再生原料,例如:利用太陽能、風力、 或是水力發電;抑或利用微生物發酵,自富含纖維素或澱粉的農業廢棄物生產氫 氣、甲烷、甲醇、乙醇、丙酮、乳酸或醋酸等生質燃料或原料,甚至配合薄膜分 離,進行揮發性產物溶解蒸發,加速與簡化分離程序,以提供車輛等運輸工具的 燃料。

利用適當的菌株,可以將農業廢棄物(纖維素或澱粉)水解為醣類,再配合適 當的酵母菌發酵,將水解醣類轉化為生質酒精或是其他生質燃料;纖維素是農業 廢棄物中含量最多的碳源,擁有極大潛力開發生產生質能源。此種程序的成敗關 鍵在於適當菌株的篩選,以取得適當的纖維素水解酵素,有效地將纖維素水解為 單醣(醣化),可以提供下一步菌株發酵,將水解單醣轉化為所需之生質能源,以 避免產生複雜的生化產品,徒增分離的成本。

2.1 緣起與研究目的

2.1.1 緣起

根據研究資料^{1,2,3,4} 顯示:纖維素水解為單醣的生化程序,包括先利用內 切型纖維素水解酵素(endo-cellulase),將纖維素結晶水解為纖維素分子,其次, 利用外切型纖維素水解酵素(exo-cellulase),將纖維素分子水解為纖維二醣、纖 維三醣、纖維四醣、纖維五醣等纖維寡醣,最後,利用纖維二醣水解酵素 (β-glucosidase/cellobiase),將上述纖維寡醣轉化為葡萄糖。因此,所需選取的 纖維素水解菌株,必須具有內切型纖維素水解酵素、外切型纖維素水解酵素、 與纖維二醣水解酵素等三種必要酵素,才能滿足要求。

根據文獻³指出:白色腐爛真菌(簡稱白腐菌, white rot fungi)如黃孢亮毛 伏革菌 (*Phanerochaete chrysosporium*)和半知菌木霉 (*Trichoderma reesei*)的 纖維素酶由許多的水解酶所組成:內切葡聚糖酶、外切葡聚糖酶和纖維二糖酶 (beta-糖酶)協同增效和組成一複雜的體外纖維素顆粒。因此,由可使木材腐 爛的數十種白腐菌中篩選出兼具上述三種水解酵素的適當菌株,是一個可行途 徑。此外,已知黑麴菌(BCRC 31130, 31494)具有纖維素水解酵素(cellulolytic enzyme)和纖維二醣水解酵素(β-glucosidase),也是很好的纖維素水解菌株。此 外,沿海紅樹林區菌相豐富,選出適當的菌株也是可行辦法之一。

還有,一般植物及綠藻細胞壁主要的成分⁵是由纖維素(Cellulose)、木質素 或木纖維(Lignin)、角明質(Cutin)、軟木質(Suberin)、半纖維質(Hemicelluloses)、 單寧(Tannin)、幾丁質(Chitin)、加羅斯(Callose)、植物黏液(Mucilages)等所構 成,以木材來說,三種主要的成份,分別為纖維素(cellulose)佔了35至50%, 半纖維素(hemicellulose)佔了20至30%,而木質素(lignin)則佔了20至30%。 但隨著不同的植物或者種子,其中的比例就隨之不同,像草本類植物的纖維素 和半纖維素等物質比例就會跟木本植物有所差異。

半纖維素(木聚糖)之構造與纖維素有些差異,其主成分為五碳糖-木糖 ⁶,木聚糖占木材質量的30%。加拿大國立研究委員會的施奈德(Schneider) 和美國普度大學的曹祖寧(G.T.Tsao)分別領導的二個研究小組,均指出若能 將木糖轉化為木酮糖(xylulose),那麼就能被酵母菌醱酵成乙醇。木糖轉化為 木酮糖的反應是由木糖異構酶所催化,因此,如果希望充分利用禾草(稻草、 麥桿、牧草等)、廢紙、木屑(漂流木)等含纖維素廢棄物為原料,將所含的纖維 素與半纖維素分別轉化為單醣--葡萄糖與木酮糖,則所需菌株尚需選出具有木 糖異構酶的菌種。

初步篩選出的菌株,可以利用紫外線(15W)照射法,引起菌株發生變異, 再進行第二次菌株篩選,可望大幅改善酵素產量。

醱酵生產上述醣化酵素,進行分離、純化與固定化,可以有效回收使用。

本項研究計畫,擬利用含有內切型、外切型纖維素水解酵素、與纖維二醣 水解酵素(又稱β-葡萄糖苷酵素),以及半纖維素水解酵素—聚木醣水解酵素等 之合適菌株,進行纖維素水解(糖化),生產單醣—葡萄糖(六碳醛醣)或木醣(五 碳醛醣),配合發酵程序,來發酵生產生質能源(生物轉化)。研究目的在於探討 有效篩選與培養菌株、分離濃縮與純化水解酵素、並固定化水解酵素生產單 醣、以及利用該單醣生產生質能源的可能性,此法可自農業廢棄物中含量最豐 富的纖維素或半纖維素,生產日益短缺的生質燃料如氫氣、甲烷、甲醇、酒精、 丙酮及丁醇等,提供車輛或燃料電池用,並減少溫室氣體—二氧化碳所造成之 全球暖化污染源。

首先,以搖瓶實驗,建立菌株篩選與培養之最佳操作條件,並配合紫外線 照射燈照射使菌株發生變異,提高纖維素水解酵素產量。其次,利用篩選與培 養之最佳菌株,生產所需纖維素水解酵素,配合掃流式薄膜過濾裝置與製備級 層析管柱,建立纖維素水解酵素分離濃縮與純化之操作變數(包括薄膜種類、 高效液相層析條件、酵素溶解度—鹽析與鹽溶等)。最後,探討纖維素水解酵 素固定化方法,以有效回收使用酵素,降低生產成本,並利用水解所得的單醣 作為發酵所需的碳源,進行生質能源的發酵生產。利用發酵菌株的生長動力, 得到發酵生產的最佳操作條件(如溫度、溶氧、pH),並由生物系統動力模式, 可算出提高產品產量的最佳操作條件(如稀釋速率、反應器操作模式),求取最 佳產品生產條件。

研究所需菌株之來源,擬由菌相豐富之沿海紅樹林區、臺大森林系張上鎮 教授與台北林業試驗所張先生處取得具有纖維素水解酵素的數十株白腐菌 (white rot fungi)菌株,並由食品所菌株保育中心購得黑麴菌(Aspergillus niger) 菌株。篩選所得菌株,再委託菌株保育中心作必要之菌株鑑定,以確立菌屬名 稱。

3

首先,在恆溫震盪箱中進行搖瓶批次實驗,水解纖維素,定期取樣分析, 確定水解產品成分,作為判定是否含有所需酵素之參考依據;其次,將初步篩 選出的菌株,在紫外線照射燈(15W, 265nm)下45cm處,分別照射10,20,30 秒,作為變異菌株再次篩選來源,選出最佳之三種菌株。接著,在恆溫震盪箱 中進行有系統的搖瓶批次動力實驗,探討纖維素水解(糖化)菌株與醱酵(生物轉 化)菌株的生長動力。由批次動力研究數據,求知這些微生物的比生長模式, 即濃度、溫度與 pH 效應之關係式,求取最佳發酵操作條件。

其次,探討糖化菌株在批次與連續式醱酵時,操作條件如稀釋速率、溫度、 pH 與碳源對於酵素產率之影響。尋求最佳操作條件,以獲致最大菌株產率或 轉化率,提供放大量產纖維素水解酵素的參考。接著,將醱酵液以掃流式薄膜 過濾裝置與製備級層析管柱,進行分離純化與濃縮,如有必要,配合鹽析、鹽 溶與結晶,來分離純化酵素。並以適當材料來固定酵素。

最後,探討生物轉化菌株在批次與連續式發酵時,操作條件如稀釋速率、 溫度、pH 與碳源對於產品產率之影響。尋求最佳操作條件,以獲致最大產率 或轉化率,提供放大量產生質能源的參考。

2.1.2 研究目的:

本研究在於探討有效篩選與培養菌株、分離濃縮與純化水解酵素、並固定 化水解酵素生產單醣、以及利用該單醣生產生質能源的可能性,此法可自農業 廢棄物中含量最豐富的纖維素或半纖維素,生產日益短缺的生質燃料如氫氣、 甲烷、甲醇、酒精、丙酮及丁醇等,提供車輛或燃料電池用,並減少溫室氣體— 二氧化碳所造成之全球暖化污染源。 3.1 菌株生長原理:

在眾多黑麴菌等菌株的研究中,所採用的方法、條件及使用的模型(model)有差異, 則所得到的結果,可能會有顯著的不同,尤其是人體實驗部分,因個人體質及生活的差異, 很難找到相同的實驗模型,要尋求一致性的結果也很困難。而且同一種名稱的黑麴菌,可 能是從不同來源分離出來的,或不同的種株,從基因分析的結果,雖然屬於同一種類,但 在活性、溫度及酸鹼耐受性可能會有很大的差異,效果也會有差別。

而文獻中揭示酵素之製造速率與此菌種之比成長速率有重要關係,因此,先進行微生物比成長速率與環境因素,如基質濃度、溫度、pH等之關係,作為其生長之預測依據。由血清瓶微生物光學密度與反應時間之關係,加上適當之模式,可決定各模式參數。

應用經過驗證之準確動力模式,可以模擬分析該程序,搜尋最佳菌株生長的操作條件,以提高纖維素水解酵素的效率。

3.2 菌株生長理論部份

本研究利用血清瓶批次反應,來研究微生物比生長速率受到各種環境因素之影響,以 估算各模式參數值,作為後續程序謀模擬之依據。

微生物比生長速率受到各種環境因素之影響,可表為

 $= f_1(S) \cdot f_2(T) \cdot f_3(pH) \cdot \dots$

以下分別敘述基質濃度、溫度、pH 等之相關模式:

3.2.1 基質濃度效應(Substrate effect)—Andrews model

$$\mu = \frac{\mu_m S}{K + S + \frac{S^2}{K_L}} - \mu_C \tag{3.1}$$

式中 μ_m 是最大成長常數(h⁻¹),K是飽和常數(ppm),S是基質濃度(ppm), μ 是微生物比 生長速率(h⁻¹),K_I是抑制常數。式中, μ_m 與K是待決定之模式參數。

3.2.2 溫度效應(Temperature effect)—Arrhenius equation.

$$\mu = \mu_0 e^{-\frac{E_a}{RT}}$$
(3.2)

or

$$\ln \mu = \ln \mu_0 - \frac{E_a}{RT}$$
(3.3)

式中 μ_0 和 μ 是在某個參考溫度(如 30°C)和任一溫度下之微生物比生長速率(h⁻¹), E_a是反應活化能(cal/gmol), R 是氣體常數(1.987cal/gmol·K), T 是絕對溫度(K)。

3.2.3 酸鹼度(pH)效應(pH effect)—Michaelis pH Function.

$$\mu = \frac{\delta}{1 + \frac{K_1}{\left[H^+\right]} + \frac{\left[H^+\right]}{K_2}}$$
(3.4)

式中, \delta, K1, K2 是待決定之模式參數。

和纖維素水解有關的酵素包括:內切型纖維素水解酵素(Endo-1,4-β-D-glucanase,又分為 EGI,EGII,EGIII,與EGV等四種)、外切型纖維素水解酵素(1,4-β-cellobiohydrolase,又分為 CBHI與CBHII等兩種)、與纖維二醣水解酵素(β-glucosidase/cellobiase),以上三種酵素可以 將纖維素的葡聚糖(glucan)水解成六碳醣的葡萄單糖(glucose),其反應機制如下圖所示;此外, 由於木質纖維素(lignocellulose)含有五碳醣的木糖(xylose)形成的木聚糖(xylan),因此需要木糖 異構酶(xylanase)的水解。

圖 01 纖維素酵素水解之詳細反應機構.

The three types of reaction catalyzed by cellulases: 1. Breakage of the non-covalent interactions present in the crystalline structure of cellulose (endo-cellulase) 2. Hydrolysis of the individual cellulose fibers to break it into smaller sugars (exo-cellulase) 3. Hydrolysis of disaccharides and tetrasaccharides into glucose (beta-glucosidase).

圖 02 纖維二醣酵素水解反應機構.

圖 03 纖維素酵素水解之示意圖

- 4.1 實驗方法—以黑麴菌為例
- 4.1.1 菌株培養實驗步驟
 - 取五個 250 mL 錐形瓶,分別標上培養液1、培養液2、培養液3、培養液4、培養液
 分別加入 50 mL、pH 5 配好之培養液(Yeast(20g/L), KH₂PO₄(5.0g/L), MgSO₄7H₂O(0.5g/L))。
 - 2、將上列配好之五瓶培養基,置入高壓滅菌釜滅菌(121℃、1.5 bar)20分鐘。
 - 3、將滅菌完後之錐形瓶移至無菌操作台冷卻,待冷卻後,將黑麴菌植菌至各錐形瓶中, 再加入微量葡萄糖溶液。
 - 4、馴化一段時間後,再以HCI標定至pH5,隔天做動力之前,再標定至pH5。
- 4.1.2 動力實驗步驟
 - 1、作為研本實驗以可生產黑麴菌究主題。
 - 2、樣品以葡萄糖作為碳源;菌種以紫外光/可見光分光光度計分析其光學密度。以針筒吸出錐形瓶內溶液,放入UV/VIS分光光度計用石英方型瓶(cuvette)中(約八分滿),測得黑麴菌的吸光度(Abs)。每15分鐘測定一次,共測7次。以初期速率法線性迴歸(Linear regression),可得在該基質濃度下,微生物之比成長速率。
- 4.1.3 濃度效應動力實驗步驟
 - 1、以濃度10、20、30......90、100 g/L 不同濃度葡萄糖作為碳源。以4.1.1 所配製的培養液,加入不同濃度葡萄糖,放入UV/VIS 分光光度計用石英方型瓶(cuvette)中(約八分滿),測得黑麴菌的吸光度(Abs)。每15分鐘測定一次,共測7次。以初期速率法線性迴歸(Linear regression),可得在該基質濃度下,微生物之比成長速率。
- 4.1.4 溫度效應動力實驗步驟
 - 將4.1.1所培養的培養液十瓶加入相同濃度葡萄糖,放入UV/VIS分光光度計用石英 方型瓶(cuvette)中(約八分滿),測得黑麴菌的吸光度(Abs),將之放至溫度20℃。15分 鐘測定一次,共測7次。以初期速率法線性迴歸(Linear regression),可得在該基質濃 度下,微生物之比成長速率。
 - 2、以此類推放置 22.5, 25, 27.5, 30, 35 等六個溫度下。
- 4.1.5 pH 效應動力實驗步驟
 - 取五個 250 mL 錐形瓶,分別標上培養液1、培養液2、培養液3、培養液4、培養液
 5 分別加入 50 mL、pH 5 配好之培養液(Yeast(20g/L), KH₂PO₄(5.0g/L), MgSO₄7H₂O(0.5g/L))。
 - 2、將上列配好之五瓶培養基,置入高壓滅菌釜滅菌(121℃、1.5 bar)20 分鐘。
 - 3、將滅菌完後之錐形瓶移至無菌操作台冷卻,待冷卻後,將黑麴菌植菌至各錐形瓶中, 再加入微量葡萄糖溶液。
 - 4、馴化一段時間後,再以HCI標定至pH5,隔天做動力之前,再標定至pH5。
 - 5、以40g/L葡萄糖為碳源放入UV/VIS分光光度計用石英方型瓶(cuvette)中(約八分滿), 測得黑麴菌的吸光度(Abs),將之放至溫度30℃。15分鐘測定一次,共測7次。以初 期速率法線性迴歸(Linear regression),可得在該基質濃度下,微生物之比成長速率。
 - 6、以此類推以 pH1,2,3,...8,9,10 標定

4.2 材料

4.2.1 實驗菌種

食品所之黑麴菌(Aspergillus niger) (BCRC 31494)。

食品所之半知菌木霉(Trichoderma reesei) (BCRC 31863)。

食品所之黃孢亮光伏革菌(Phanerochaete chrysosporium) (BCRC 36201)。

食品所之酵母菌(Saccharomyces cerevisiae)(BCRC 20822)。

4.2.2 實驗藥品

KH₂PO₄

Potassium Phosphate, Monobasic (EP 級) KANTO CHEMICALS CO, INC.(塑膠瓶 500 g 裝) MgSO₄ · 7H₂O Magnesium Sulfate (MgSO₄ · 7H₂O = 246.50)(EP 級) 三德藥品株式會社,日本大阪(塑膠瓶 500 g 裝) Glucose 葡萄糖D(+)Glucose monohydrate (C₆H₁₂O₆ · H₂O = 198.17) 六和製藥(塑膠瓶 1kg 裝) 新竹市八德路 87 號 HCl

```
Sodium Chloride (EP 級)
```

聯工化學廠股份有限公司(塑膠瓶 500g 裝)

新竹市千甲路 133 號

Yeast

EXTRACTO DE LEVADURA 潤捷科技股份有限公司(塑膠瓶 500g 裝)

4.2.3 玻璃器材

1000ml	量瓶	Х	3
1000ml	燒杯	х	1
500ml	燒杯	х	4
200ml	燒杯	х	4
250ml	錐形瓶	х	5
150ml	量筒	х	1
100ml	量筒	х	2
稱量瓶		х	2
漏斗		Х	1
錶玻璃		Х	10
蓋玻璃		Х	10
玻璃攪扌	半棒	Х	1
石英方	型瓶	X	5

4.2.4.實驗儀器

高效液相層析儀

HPLC (High Performance Liquid Chromatography) 多溶媒輸送系統 (Waters-600E 型) 樣品自動注射器(Waters-717 plus 型) 紫外光/可見光偵測器(Waters-2487) 折射率偵測器(Waters-2414)

美商沃特斯國際股份有限公司台灣分公司 TEL:(02)25431898

紫外光/可見光分光光度計 UV/VIS Spectrophotometer (JASCO V-530)

尚偉股份有限公司 新竹市八德路 19 巷 32 號 1 樓 Tel:(03) 562-3422 Fax:(03) 562-3433 由 3.3 節所述的纖維素水解有關的酵素,被用來作為有效篩選與培養菌株、分離濃縮與 純化水解酵素、並固定化水解酵素生產單醣、以及探討利用該單醣生產生質能源的可能性之 重要依據。因此,本研究的第一步驟是菌株的篩選與培養,由文獻收集得到的資訊整理如下 (表一至表四),表一中包含台大森林系張上鎮教授提供、可以使木材腐朽的白腐菌(white rot fungi)菌種,表二中包含黑麴菌相關資料,表三中包含可以生產各種纖維素水解酵素的菌株資 料庫,由表一至表三資料的研讀整理,可以篩選出分泌纖維素水解酵素種類最多的菌株;將 選出的纖維素水解菌株所能提供的纖維水解酵素種類示於表四。

因此,先進行黑麴菌(A. niger)(BCRC 31494)、半知菌木霉(T. reesei)(BCRC 31863)、黄孢 亮光伏革菌(P. chrysosporium)(BCRC 36201)、與酵母菌(S. cerevisiae)(BCRC 20822)等菌株的生 長動力實驗,尋求其最佳生長條件,作為下一階段的研究依據。

衣 01 百八林怀示 水上與我投從伝之日 周 困 困 俚 石 柵 兴 貝 杆					
Organism	BCRC Number	Aerobic	Chinese Name	Growth Conditions	Others
Schizophyllum commune	35328	Aerobic	裂褶菌	30°C	木材腐朽菌
Trametes versicolor	35253	Aerobic	雲芝;彩絨栓菌	26°C	木材腐朽菌
Lenzites betulina	35296	Aerobic	樺褶孔菌	25°C	木材腐朽菌

5.1 白腐菌(white rot fungus)相關資料

	ŧ 01	台大森林系	張上鎮教授提供之	白腐菌菌種名	3 稱與資料
--	------	-------	----------	--------	--------

來源資料:食品所 生物資源資料庫(BCRC)

5.2 黑麴菌相關資料

表 02 黑麴菌相關資料:

Organism	BCRC Number	Aerobic	Characterization	Growth Conditions
Aspergillus niger	31130	Aerobic	Production of tannin-gallic acidM31; gluconic acid glucose oxidaseM2013; pseudonigeron (1-3)-alpha-D-glucan -M357;kynureninaseM128; β-glucosidaseM766 Biotransformation of acetanilidM767; iononeM2438; pergolideM601; sesquiterpene lactone costunolideM18	24°C
Aspergillus niger	31494	Aerobic	Production of acetylesteraseM2317; cellulolytic enzymeM2440; β-glucosidase IIM2477, M2481; glucosyltransferaseM2479, M2483; saccharifying enzymesM212; glucoamylaseM213; maltase; alpha-amylaseM214; ethanol from potato starch when cocultured with <i>Sacchromyces cervisiae</i> ATCC 26603M768; monoamine oxidaseM2026; acetyl-xylan esteraseM769	24°C

來源資料:食品所 生物資源資料庫(BCRC)

酵素名稱	內切型纖維素水解酵素(Endo-cellulase) Endoglucanase	外切型纖維素水解酵素(Exo-cellulase) (Exo-cellobiohydrolase)
酵素编號	EC <u>3.2.1.4</u>	EC <u>3.2.1.91</u>
酵素別名	Avicelase β-1,4-glucanase β-1,4-endoglucan hydrolase Carboxymethyl cellulase Celludextrinase Endo-1,4-β-D-glucanase Endo-1,4-β-glucanase Endo-1,4-β-glucanase Endoglucanase	Cellulose 1,4-beta-cellobiosidase 1,4-beta-cellobiosidase 1,4-β-cellobiohydrolase 1,4-β-D-glucan cellobiohydrolase Avicelase Exo-1,4-β-D-glucanase Exocellobiohydrolase Exoglucanase
酵素功能	There are capable of hydrolyzing the $\beta(1-4)$ bonds randomly along the cellulose chain. Endo-cellulase breaks internal bonds to disrupt the crystalline structure of cellulose and expose individual cellulose polysaccharide chains ⁶ . Endohydrolysis of 1,4- β -D-glucosidic linkages in cellulose, lichenin and cereal β -D-glucans. Will also hydrolyze 1,4-linkages in β -D-glucans also containing 1,3-linkages. It hydrolyzes $\beta(1-4)$ bonds in cellulose to release cellobiose from the non-reducing end of the chains.	These enzymes cleave off glucose molecule from one end of the cellulose strand. Exo-cellulase cleaves 2-4 units from the ends of the exposed chains produced by endocellulase, resulting in the tetrasaccharides or <u>disaccharide</u> such as cellobiose. There are two main types of exo-cellulases (or cellobiohydrolases, abbreviate CBH) - one type working processively from the reducing end, and one type working processively from the non-reducing end of cellulose. Hydrolysis of 1,4- β -D-glucosidic linkages in cellulose and cellotetraose, releasing cellobiose from the non-reducing ends of the chains ° Hydrolysis of 1,4-beta-D-glucosidic linkages in cellulose and cellotetraose, releasing cellobiose from the non-reducing ends of the chains °
含有酵素菌株	Acetivibrio cellulolyticus	<u>Acremonium cellulolyticus Y-94</u>
	<u>Acidothermus cellulolyticus</u>	<u>Agaricus bisporus D649</u>
	Arachniotus sp.	<u>Anaeromyces sp. W-98</u>
	Aspergillus aculeatus	Aspergillus ficum
	Aspergillus niger 黑麴菌	<u>Aspergillus nidulans FGSC A4</u>
	Bacillus sp.	Aspergillus ustus
	<u>Cellulomonas fimi</u>	<u>Cellulomonas fimi</u>
	Chalara (Thielaviopsis) paradoxa	<u>Chaetomium thermophilum CT2</u>
	Fusarium oxysporum	<u>Humicola insolens</u>
	<u>Humicola insolens</u>	<u>Hypocrea jecorina QM9414</u>
	<u>Microbispora bispora</u>	<u>Hypocrea koningii</u>
	<u>Mucor aircincllaidas</u>	<u>Lentinula eaoaes L54</u> Mucor circinalloi das
	Mycobactarium tubaraulosis H27Dy	Neocallimastic patriciarum
	Saccharomyces cerevisiae 酵母苗	Orninomyces sn PC-2
	Stigmatella aurantiaca	Penicillium pinophilum
	<u>Silonancia analitata</u>	
	Streptomyces albaduncus	Phanerochaete chrysosporium 黃孢亮毛伏革菌 黃孢原毛平革菌 著名的白腐真菌 Phanerochaete chrysosporium 分泌木素過氧
	12	化酶(manganese-dependent peroxidases)和漆

表 03 含纖維素水解酵素的菌株資料庫

酶(laccases),除降解木质素外,還可降解諸 多的污染物,如多芳香族化合物、DDT、TNT 等外源化学物(xenobiotics),是一種具有廣 闊應用開發潜力的生物製浆菌(Bumpus et

	<i>al.</i> , 1985) •
<u>Streptomyces halstedii JM8</u>	Piromyces rhizinflatus 2301
Streptomyces lividens	<u>Streptomyces sp. M23</u>
Streptomyces reticuli	<u>Talaromyces emersonii</u>
Streptomyces sp.	<u>Thermobifida fusca</u>
<u>Streptomyces sp. KSM-9</u>	<u>Thermobifida fusca YX</u>
<u>Thermobifida fusca</u>	Trichoderma harzianum
<u>Thermobifida fusca YX</u>	Trichoderma koningii 康寧木腐黴
Trichoderma koningii 康寧木腐黴	<u>Trichoderma parceramosum</u>
Trichoderma longibrachiatum	Trichoderma reesei 半知菌木霉
Trichoderma reesei 半知菌木霉	<u>Volvariella volvacea V14</u>
Trichoderma viride 綠木黴	
Volvariella volvacea	

表 03	会纖維素水解酵素的菌株資料庫	(續)
1000		1.28

酵素名稱	纖維二醣水解酵素 (β-glucosidase/cellobiase)	木糖異構酶 (xvlanase)
酵素編號	E.C.3.2.1.21	E.C.3.2.1.8
酵素別名	β-glucosidase Amygdalase β -D-glucoside glucohydrolase Cellobiase Gentobiase	Endo-1,4-β-xylanase 1,4-β-D-xylan xylanohydrolase endo-(1→4)-β-xylanase(1→4)-β-xylan 4-xylanohydrolase; endo-1,4-xylanase; xylanase; β-1,4-xylanase; endo-1,4-xylanase; endo-β-1,4-xylanase; endo-1,4-β-D-xylanase; 1,4-β-xylan xylanohydrolase; β-xylanase; β-1,4-xylan xylanohydrolase; endo-1,4-β-xylanase; β-D-xylanase
酵素功能	It hydrolyzes $\beta(1-4)$ bonds in cellobiose, giving two molecules of glucose ² . Hydrolysis of terminal, non-reducing beta-D-glucose residues with release of beta-D-glucose ¹ . Cellobiase or beta-glucosidase hydrolyses the endo-cellulase product into individual monosaccharides ⁶ .	Xylanase hydrolyzes xylans, indigestible components of plant fibers. Since humans lack the endogenous enzymes required to digest plant fibers, the supplementation of xylans provides humans with an additional source of nutrition and reduces the bulking effect of fibrous foods. Scientific evidence suggests that carbohydrolytic enzymes, such as hemicellulase, can be useful supplements for digestive support and general nutritional support ⁴ . The xylanase will attack on the xylan or pentose polysaccharide (NSP type) from plant fiber to liberate .xylose which is readily absorbed in the intestine ² . Endohydrolysis of 1,4-beta-D-xylosidic linkages in xylans ¹ .
含有酵素菌株	Arabidopsis embryos	Aspergillus awamori
	Aspergillus aculeatus	Aspergillus niger A3 黑麴菌
	Aspergillus japonicus	Bacillus pumilus WL-11
	Aspergillus kawasachi	Bacillus sp. BP-23
	Aspergillus nidulans	Bacillus subtilis
	Aspergillus niger 黑麴菌	Clostridium thermocellum
	Aspergillus phoenicis QM 329	Neocallimastix frontalis
	Bacillus lentimorbus B-6	Neocallimastix patriciarum 27

	Bacillus Thermoamyloliquefaciens KP1071	Nonomuraea flexuosa
	Clostridum acetobutylicum	Paenibacillus barcinonensis
-	Clostridium thermocellum	Staphylococcus sp. SG-13
	Curuularia sp.	Scierotium rolfsii UV-8
-	Fusarium oxysporum	Streptomyces sp.
	Lycopersicon esculentum	Thermomyces lanuginosus
	Mucor circinelloides	Trichoderma harzianum Rifai
	Penicillium purpurogenum	Trichoderma sp.
	Saccharomyces cerevisiae 酵母菌	Trichoderma reesei 半知菌木霉
	Sclerotium rolfsii UV-8	Trichoderma reesei SAF3 半知菌木霉
	Sulfolobus solfataricus	Trichoderma viride 綠木黴
	Termitimyces clypeatus	
	Trichoderma aureoviride 7-121	
	Trichoderma reesei QM9414 半知菌木霉	
	Trichoderma viride 綠木黴	
	Volvariella volvacea	

參考文獻:

1. http://www.cazy.org/fam/GH6.html

2. http://www.enzymeindia.com/enzymes/cellulase.asp .

3. http://www.unavarra.es/genmic/Congresos/gcbb-vi/eizmendi.htm

4. http://www.greatvistachemicals.com/biochemicals/xylanase.html

5. The future of Biofuels. http://carnegiedpb.stanford.edu/research/research_csomerville.php

6. http://en.wikipedia.org/wiki/Cellulase

7. http://www.enzymeindia.com/enzymes/beta-glucanase.asp

8.

http://books.google.com.tw/books?id=aBsu0560nYIC&printsec=frontcover&dq=cellobiohydrolases &source=gbs_summary_s&cad=0#PPA6,M1

菌名	BCRC 编號	ATCC 编號	內切型纖維素水解酵素 (β-1,4-endoglucanase) (EG I, EG II, EG III, and EG V)	外切型纖維素水解酵素 (β-1,4-cellobiohydrolases /Exo-cellulase) (Exo-cellobiohydrolase) (CBH I & CBH II)	纖維二醣水解酵素 (cellobiase/β-glucosidase)	木糖異構酶(xylanases) (XYN I & XYN II)
<mark>黑麴菌</mark> Aspergillus niger	31494	10864	✓	· · · · · · · · · · · · · · · · · · ·	✓ Novozyme 188	✓
黄孢亮光伏革菌 Phanerochaete chrysosporium	36201	32629		\checkmark		
半知菌木霉 Trichoderma reesei	31863	26921	✓	\checkmark	✓	\checkmark
綠木黴	32054	20538				
Trichoderma	33129	28020	\checkmark		\checkmark	
viride	33458	52440				
康寧木腐黴 Trichoderma koningii	33558; 33560; 33561; 33562; 33563; 33564; 33565; 33566		~	✓		
風乾菌 Scierotium rolfsii UV-8					\checkmark	\checkmark
卷枝毛黴 Mucor circinelloides			✓	✓	✓	
酵母菌 Saccharomyces cerevisiae	20822	9763	\checkmark		\checkmark	
臺灣本土根瘤菌 Cupriavidus taiwanensis	17206					

表 04 纖維水解菌株分泌酵素表

 We presume that the following enzymes are important in hydrolyzing biomass: β-1,4-endoglucanases (EG I, EG II, EG III, and EG V); β-1,4-cellobiohydrolases (CBH I & CBH II); xylanases (XYN I & XYN II); β-glucosidase; α-L-arabinofuranosidase; acetyl xylan esterase; β-mannanase; and α-glucuronidase. (http://www1.eere.energy.gov/biomass/printable_versions/cellulase_enzyme.html

2. 粗體字菌名表示被選中研究的菌株。

表 05 本研究選出的纖維水解菌株

菌名	照片	照片	照片	BCRC 编號	ATCC 编號
黑麴菌 Aspergillus niger	Aspergillus Niger (a common household mold)			31494	10864
半知菌木霉 Trichoderma reesei				31863	26921

綠木黴 Trichoderma viride			<u>32054</u>	20538
黄孢亮光伏革菌 Phanerochaete chrysosporium			36201	32629
酵母菌 Saccharomyces cerevisiae	Nucleus Nucleus Vacuole Vacuole Vacuole Vacuole Vacuole Vacuole Vacuole Vacuole Vacuole Vacuole Vacuole		20822	9763

1. http://botit.botany.wisc.edu/toms_fungi/may97.html

2. <u>http://images.google.com.tw/images?hl=zh-TW&rls=GFRB,GFRB:2007-29,GFRB:zh-TW&q=Saccharomyces+cerevisiae+image&um=1&ie =UTF-8&sa=X&oi=image_result_group&resnum=1&ct=title</u> 6. 結果

6.1 黑麴菌比生長動力實驗

- 6.1.1 pH = 5.0, 20°C下,基質濃度效應
 - 6.1.1.1 10g/L 葡萄糖批次實驗數據

表 A01 在 20°C下,基質濃度為 10g/L,黑麴菌成長之動力數據

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.0353	-3.34387	0.0330
0.25	0.0356	-3.33541	0.0559
0.50	0.0395	-3.23145	
0.75	0.0423	-3.16297	
1.00	0.0459	-3.08129	
1.25	0.0496	-3.00376	
1.50	0.0532	-2.9337	

圖 A01 微生物在 20°C, 10g/L 基質濃度(pH=5.1)下,光學密度變化圖 (600nm)

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.0403	-3.2114	0.0346
0.25	0.04065	-3.20276	0.0540
0.50	0.0456	-3.08785	
0.75	0.0487	-3.02208	
1.00	0.0499	-2.99773	
1.25	0.0532	-2.9337	
1.50	0.0567	-2.86998	

表 A02 在 20°C 下,基質濃度為 20g/L,黑麴菌成長之動力數據

圖 A02 微生物在 20°C, 20g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.02984	-3.51191	0.0247
0.25	0.0301	-3.50323	0.0347
0.50	0.0358	-3.32981	
0.75	0.0389	-3.24676	
1.00	0.0432	-3.14191	
1.25	0.0484	-3.02826	
1.50	0.0546	-2.90772	

表 A03 在 20°C 下,基質濃度為 30g/L,黑麴菌成長之動力數據

圖 A03 微生物在 20°C, 30g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.0289	-3.54253	0.0358
0.25	0.0292	-3.53359	0.0558
0.50	0.0356	-3.33541	
0.75	0.0423	-3.16297	
1.00	0.0496	-3.00376	
1.25	0.0534	-2.92994	
1.50	0.0596	-2.8201	

表 A04 在 20°C 下,基質濃度為 40g/L,黑麴菌成長之動力數據

圖 A04 微生物在 20°C, 40g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.04173	-3.17653	0.0353
0.25	0.0421	-3.16771	
0.50	0.0486	-3.02413	
0.75	0.0534	-2.92994	
1.00	0.0597	-2.81842	
1.25	0.0634	-2.75829	
1.50	0.0723	-2.62693	

表 A05 在 20°C 下,基質濃度為 50g/L,黑麴菌成長之動力數據

圖 A05 微生物在 20°C, 50g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.0319	-3.44452	0.0349
0.25	0.0322	-3.43579	
0.50	0.0364	-3.31319	
0.75	0.0423	-3.16297	
1.00	0.0503	-2.98975	
1.25	0.0536	-2.92621	
1.50	0.0603	-2.80842	

表 A06 在 20°C 下,基質濃度為 60g/L,黑麴菌成長之動力數據

圖 A06 微生物在 20°C, 60g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.03154	-3.4565	0.0328
0.25	0.0318	-3.44829	
0.50	0.0356	-3.33541	
0.75	0.0423	-3.16297	
1.00	0.0503	-2.98975	
1.25	0.0598	-2.81675	
1.50	0.0658	-2.72114	

表 A07 在 20°C 下,基質濃度為 70g/L,黑麴菌成長之動力數據

圖 A07 微生物在 20°C, 70g/L 基質濃度(pH=5.1)下,光學密度變化圖 (600nm)

Time (h)	Abs	Ln Abs	μ(h ⁻¹)
0.00	0.02847	-3.5589	0.0322
0.25	0.0287	-3.55086	
0.50	0.0325	-3.42652	
0.75	0.0367	-3.30498	
1.00	0.0432	-3.14191	
1.25	0.0596	-2.8201	
1.50	0.0634	-2.75829	

表 A08 在 20°C 下,基質濃度為 80g/L,黑麴菌成長之動力數據

圖 A08 微生物在 20°C, 80g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (660nm)

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.0275	-3.59466	0.0210
0.25	0.0277	-3.58668	0.0319
0.50	0.0342	-3.37553	
0.75	0.0432	-3.14191	
1.00	0.0523	-2.95076	
1.25	0.0601	-2.81175	
1.50	0.0689	-2.6751	

表 A09 在 20°C 下,基質濃度為 90g/L,黑麴菌成長之動力數據

圖 A09 微生物在 20°C, 90g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.02262	-3.78892	0.0317
0.25	0.0228	-3.78099	
0.50	0.0302	-3.49991	
0.75	0.0392	-3.23908	
1.00	0.0432	-3.14191	
1.25	0.0523	-2.95076	
1.50	0.0603	-2.80842	

表 A10 在 20°C下,基質濃度為 100g/L,黑麴菌成長之動力數據

圖 A10 微生物在 20°C, 100g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)
6.1.2 20°C之動力學模式

Glucose conc. (g/L)	μ_{exp} . (h ⁻¹)	μ _{pred.} (h ⁻¹)
10	0.0339	0.032546
20	0.0346	0.033729
30	0.0347	0.034142
40	0.0358	0.034353
50	0.0353	0.03448
60	0.0349	0.034566
70	0.0328	0.034627
80	0.0322	0.034673
90	0.0319	0.034709
100	0.0317	0.034738

表 A11 各濃度下實驗之μ值及 SAS 預測之μ值統整表

圖 All 黑麴菌比生長動力模式 (Monod model) 圖

6.2.1 pH = 5.1 溫度效應 22.5℃

6.2.1.1 22.5°C, 10g/L 葡萄糖批次實驗數據

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.03587	-3.32785	0.0366
0.25	0.0362	-3.3187	0.0500
0.50	0.0398	-3.22389	
0.75	0.0423	-3.16297	
1.00	0.0467	-3.06401	
1.25	0.0523	-2.95076	
1.50	0.0587	-2.83532	

表 B01 在 22.5°C 下,基質濃度 10g/L,黑麴菌成長之動力數據

圖 B01 微生物在 22.5°C, 10g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.04022	-3.21339	0.0376
0.25	0.0406	-3.20399	0.0370
0.50	0.0446	-3.11002	
0.75	0.0489	-3.01798	
1.00	0.0517	-2.9623	
1.25	0.0553	-2.89498	
1.50	0.0598	-2.81675	

表 B02 在 22.5°C 下,基質濃度 20g/L,黑麴菌成長之動力數據

圖 B02 微生物在 22.5°C, 20g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.0304	-3.49364	0.0406
0.25	0.0307	-3.48349	0.0406
0.50	0.0348	-3.35814	
0.75	0.0397	-3.2264	
1.00	0.0425	-3.15825	
1.25	0.0489	-3.01798	
1.50	0.0536	-2.92621	

表 B03 在 22.5°C 下,基質濃度 40g/L,黑麴菌成長之動力數據

圖 B03 微生物在 22.5°C, 40g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

Time (h)	Abs	Ln Abs	μ (h-1)
0.00	0.02785	-3.58092	0.0257
0.25	0.0281	-3.57199	0.0557
0.50	0.0326	-3.42344	
0.75	0.0368	-3.30226	
1.00	0.0408	-3.19907	
1.25	0.0456	-3.08785	
1.50	0.0499	-2.99773	

表 B04 在 22.5°C 下,基質濃度 70g/L,黑麴菌成長之動力數據

圖 B04 微生物在 22.5°C, 70g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

Time(hr)	Abs	Ln Abs	μ(h-1)
0.00	0.03014	-3.5019	0.0344
0.25	0.0304	-3.49331	0.0344
0.50	0.0356	-3.33541	
0.75	0.0386	-3.2545	
1.00	0.0423	-3.16297	
1.25	0.0458	-3.08347	
1.50	0.0503	-2.98975	

表 B05 在 22.5°C 下,基質濃度 100g/L,黑麴菌成長之動力數據

圖 B05 微生物在 22.5°C, 100g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

 Glucose conc. (g/L)	μ _{exp} .(h-1)	$\mu_{pred.}(h^{-1})$
10	0.0366	0.033132
20	0.0376	0.037274
40	0.0406	0.039759
70	0.0357	0.040929
 100	0.0344	0.041416

表 B06 在 22.5℃ 各濃度實驗之µ值及 SAS 預測之µ值統整表

圖 B06 黑麴菌比生長動力模式(Monod model)圖

6.3.1 pH=5.1, 25°C 下黑麴菌温度效應

6.3.1.1 25°C, 10g/L 葡萄糖批次實驗數據

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.03024	-3.49859	0.0395
0.25	0.03054	-3.48872	0.0575
0.50	0.0335	-3.39621	
0.75	0.0423	-3.16297	
1.00	0.0489	-3.01798	
1.25	0.0546	-2.90772	
1.50	0.0602	-2.81008	

表 B07 在 25°C 下,基質濃度 10g/L,黑麴菌成長之動力數據

圖 B07 微生物在 25°C, 10g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.0455	-3.08916	0.0402
0.25	0.046	-3.07911	0.0402
0.50	0.0523	-2.95076	
0.75	0.0586	-2.83702	
1.00	0.0644	-2.74264	
1.25	0.0698	-2.66212	
1.50	0.0746	-2.59561	

表 B08 在 25℃下,基質濃度 20g/L,黑麴菌成長之動力數據

圖 B08 微生物在 25°C, 30g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.0276	-3.5903	0.0447
0.25	0.0279	-3.57913	0.0447
0.50	0.0286	-3.55435	
0.75	0.0325	-3.42652	
1.00	0.0374	-3.28608	
1.25	0.0415	-3.18206	
1.50	0.0481	-3.03447	

表 B09 在 25°C 下,基質濃度 40g/L,黑麴菌成長之動力數據

圖 B09 微生物在 25°C, 40g/L 基質濃度(pH = 5.0)下,光學密度變化圖(600nm)

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.0349	-3.35355	0.0387
0.25	0.0353	-3.34387	0.0307
0.50	0.0386	-3.2545	
0.75	0.0472	-3.05336	
1.00	0.0556	-2.88957	
1.25	0.0657	-2.72266	
1.50	0.0723	-2.62693	

表 B10 在 25°C 下,基質濃度 70g/L,黑麴菌成長之動力數據

圖 B10 微生物在 25°C, 70g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.0309	-3.47538	0.0368
0.25	0.0312	-3.46638	0.0508
0.50	0.0356	-3.33541	
0.75	0.0389	-3.24676	
1.00	0.0458	-3.08347	
1.25	0.0596	-2.8201	
1.50	0.0732	-2.61456	

表 B11 在 25℃下,基質濃度 100g/L,黑麴菌成長之動力數據

圖 B11 微生物在 25°C, 100g/L 基質濃度(pH=5.1)下,光學密度變化圖 (600nm)

 Glucose conc. (g/L)	μ_{exp} .(h ⁻¹)	$\mu_{pred.}(h^{-1})$
10	0.0395	0.035161
20	0.0402	0.040301
40	0.0447	0.043478
70	0.0387	0.040166
 100	0.0368	0.045637

表 B12 在 25℃ 下各濃度實驗之µ值及 SAS 預測之µ值統整表

6.4.1 pH = 5.1, 27.5°C 下黑麴菌温度效應

6.4.1.1 27.5°C, 10g/L 葡萄糖批次實驗數據

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.03453	-3.36593	0.0426
0.25	0.0349	-3.35527	0.0420
0.50	0.0355	-3.33822	
0.75	0.0363	-3.31594	
1.00	0.0369	-3.29954	
1.25	0.0376	-3.28075	
1.50	0.0385	-3.2571	

表 B13 在 27.5°C 下,基質濃度 10g/L,黑麴菌成長之動力數據

圖 B13 微生物在 27.5°C, 10g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.04224	-3.16439	0.0433
0.25	0.0427	-3.15356	0.0433
0.50	0.0469	-3.05974	
0.75	0.0537	-2.92434	
1.00	0.0633	-2.75987	
1.25	0.0698	-2.66212	
1.50	0.0723	-2.62693	

表 B14 在 27.5°C 下,基質濃度 20g/L,黑麴菌成長之動力數據

圖 B14 微生物在 27.5°C, 20g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.0295	-3.52506	0.0473
0.25	0.0298	-3.51325	0.0475
0.50	0.0356	-3.33541	
0.75	0.0423	-3.16297	
1.00	0.0486	-3.02413	
1.25	0.0556	-2.88957	
1.50	0.0623	-2.77579	

表 B15 在 27.5°C 下,基質濃度 40g/L,黑麴菌成長之動力數據

圖 B15 微生物在 27.5°C, 40g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

6.4.1.4 27.5°C, 70g/L 葡萄糖批次實驗數據

		e	
Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.0334	-3.4007	0.0/18
0.25	0.0337	-3.39026	0.0418
0.50	0.0367	-3.30498	
0.75	0.0423	-3.16297	
1.00	0.0486	-3.02413	
1.25	0.0564	-2.87529	
1.50	0.0637	-2.75357	

表 B16 在 27.5°C 下,基質濃度 70g/L,黑麴菌成長之動力數據

圖 B16 微生物在 27.5°C, 70g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.0369	-3.29873	0.0300
0.25	0.0373	-3.28876	0.0399
0.50	0.0423	-3.16297	
0.75	0.0486	-3.02413	
1.00	0.0567	-2.86998	
1.25	0.0594	-2.82346	
1.50	0.0653	-2.72876	

表 B17 在 27.5°C下,基質濃度 100g/L,黑麴菌成長之動力數據

圖 B17 微生物在 27.5°C, 100g/L 基質濃度(pH=5.1)下,光學密度變化圖 (600nm)

Glucose conc. (g/L)	μ_{exp} .(h ⁻¹)	$\mu_{pred.}(h^{-1})$
10	0.0426	0.038409
20	0.0433	0.043293
40	0.0473	0.046232
70	0.0418	0.047618
100	0.0399	0.048196

表 B18 在 27.5℃ 下各濃度實驗之µ值及 SAS 預測之µ值統整表

圖 B18 黑麴菌比生長動力模式 (Monod model) 圖

6.5.1 pH=5.1, 30°C 下黑麴菌温度效應

6.5.1.1 30°C, 10g/L 葡萄糖批次實驗數據

	表 B19 在 30°C 下,基質濃度 10g/L,黑麴菌成長之動力數據			
Time (h)	Abs	Ln Abs	μ (h ⁻¹)	
0.00	0.0361	-3.32063	0.0408	
0.25	0.0365	-3.31044	0.0+00	
0.50	0.0431	-3.14423		
0.75	0.0499	-2.99773		
1.00	0.0568	-2.86822		
1.25	0.0623	-2.77579		
1.50	0.0759	-2.57834		

圖 B19 微生物在 30°°C, 10g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.0403	-3.2114	0.0/15
0.25	0.0407	-3.20104	0.0415
0.50	0.0486	-3.02413	
0.75	0.0512	-2.97202	
1.00	0.0586	-2.83702	
1.25	0.0623	-2.77579	
1.50	0.0687	-2.67801	

表 B20 在 30℃下,基質濃度 20g/L,黑麴菌成長之動力數據

圖 B20 微生物在 30°C, 20g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.0289	-3.54461	0.0441
0.25	0.0292	-3.53359	0.0441
0.50	0.0358	-3.32981	
0.75	0.0425	-3.15825	
1.00	0.0486	-3.02413	
1.25	0.0532	-2.9337	
1.50	0.0607	-2.80181	

表 B21 在 30°C 下,基質濃度 40g/L,黑麴菌成長之動力數據

圖 B21 微生物在 30°C, 40g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.0270	-3.61081	0.0308
0.25	0.0273	-3.60087	0.0398
0.50	0.0304	-3.49331	
0.75	0.0387	-3.25192	
1.00	0.0462	-3.07478	
1.25	0.0573	-2.85945	
1.50	0.0638	-2.752	

表 B22 在 30°C 下,基質濃度 70g/L,黑麴菌成長之動力數據

圖 B22 微生物在 30°C, 70g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

		_	
Time(hr)	Abs	Ln Abs	μ(h ⁻¹)
0.00	0.0284	-3.56031	0.0378
0.25	0.0287	-3.55086	0.0578
0.50	0.0305	-3.49003	
0.75	0.0376	-3.28075	
1.00	0.0423	-3.16297	
1.25	0.0492	-3.01186	
1.50	0.0556	-2.88957	

表 B23 在 30°C 下、基質濃度 100g/L,黑麴菌成長之動力數據

圖 B23 微生物在 30°C, 100g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

6.5.2 30°C之動力學模式

Glucose conc. (g/L)	μ_{exp} .(h ⁻¹)	$\mu_{\text{pred.}}(\text{h}^{-1})$
10	0.0408	0.037329
20	0.0415	0.041213
40	0.0441	0.043475
70	0.0398	0.044523
100	0.0378	0.044956

表 B24 30°C下,實驗之μ值及 SAS 之預測μ值統整表

圖 B24 黑麴菌比生長動力模式 (Monod Mondel) 圖

6.6.1 pH=5.1, 35°C 下黑麴菌温度效應

6.6.1.1 35°C, 10g/L 葡萄糖批次實驗數據

	表 B25 在 35℃下,基質	育濃度 10g/L,黑麴菌成	長之動力數據
Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.0358	-3.33065	0.0367
0.25	0.0361	-3.32146	0.0507
0.50	0.0397	-3.2264	
0.75	0.0435	-3.13499	
1.00	0.0497	-3.00175	
1.25	0.0523	-2.95076	
1.50	0.0576	-2.85423	

圖 B25 微生物在 35°C, 10g/L 基質濃度(pH=5.)下,光學密度變化圖 (600nm)

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.0403	-3.2114	0.0375
0.25	0.0407	-3.20202	0.0575
0.50	0.0436	-3.1327	
0.75	0.0486	-3.02413	
1.00	0.0543	-2.91323	
1.25	0.0581	-2.84559	
1.50	0.0602	-2.81008	

表 B26 在 35°C 下、基質濃度 20g/L,黑麴菌成長之動力數據

圖 B26 微生物在 35°C, 20g/L 基質濃度(pH = 5.0)下,光學密度變化圖 (600nm)

		-	
Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.0289	-3.54357	0.0300
0.25	0.0292	-3.53359	0.0399
0.50	0.0324	-3.4296	
0.75	0.0376	-3.28075	
1.00	0.0431	-3.14423	
1.25	0.0486	-3.02413	
1.50	0.0534	-2.92994	

表 B27 在 35℃下,基質濃度 40g/L,黑麴菌成長之動力數據

圖 B27 微生物在 35°C, 40g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.0269	-3.61712	0.0356
0.25	0.0271	-3.60822	0.0550
0.50	0.0304	-3.49331	
0.75	0.0356	-3.33541	
1.00	0.0397	-3.2264	
1.25	0.0433	-3.1396	
1.50	0.0489	-3.01798	

表 B28 在 35°C 下,基質濃度 70g/L,黑麴菌成長之動力數據

圖 B28 微生物在 35°C, 70g/L 基質濃度(pH = 5.0)下,光學密度變化圖 (600nm)

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.0275	-3.59502	0.0348
0.25	0.0277	-3.58632	0.0548
0.50	0.0348	-3.35814	
0.75	0.0402	-3.21389	
1.00	0.0496	-3.00376	
1.25	0.0532	-2.9337	
1.50	0.0567	-2.86998	

表 B29 在 35°C 下、基質濃度 100g/L, 黑麴菌成長之動力數據

圖 B29 微生物在 35°C, 100g/L 基質濃度(pH = 5.0)下,光學密度變化圖 (600nm)

6.6.2 35°C之動力學模式

Glucose conc. (g/L)	μ_{exp} .(h ⁻¹)	$\mu_{pred.}(h^{-1})$
10	0.0367	0.033673
20	0.0375	0.037179
40	0.0399	0.039221
70	0.0356	0.040166
100	0.0348	0.040557

表 B30 35℃ 下各濃度實驗之µ值及 SAS 預測之µ值統整表

圖 B30 黑麴菌比生長動力模式(Monod model)圖

6.7.1.1 40°C, 10g/L 葡萄糖批次實驗數據

Time (h)	Abs Ln Abs	μ (h ⁻¹)
0.00	0.0402 -3.21389	0.0347
0.25	0.0406 -3.20522	0.0547
0.50	0.0423 -3.16297	
0.75	0.0497 -3.00175	
1.00	0.0534 -2.92994	

表B31 在40°C下、基質濃度10g/L,黑麴菌成長之動力數據

圖 B31 微生物在 40°C, 10g/L 基質濃度(pH = 5.0)下,光學密度變化圖 (600nm)

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.0304	-3.49331	0.0354
0.25	0.0307	-3.48447	0.0554
0.50	0.0357	-3.3326	
0.75	0.0412	-3.18932	
1.00	0.0467	-3.06401	

表 B32 在 40°C 下、基質濃度 20g/L,黑麴菌成長之動力數據

圖 B32 微生物在 40°C, 20g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.0330	-3.41155	0.0374
0.25	0.0333	-3.4022	0.0374
0.50	0.0364	-3.31319	
0.75	0.0397	-3.2264	
1.00	0.0436	-3.1327	

表 B33 在 40°C 下、基質濃度 40g/L,黑麴菌成長之動力數據

圖 B33 微生物在 40°C, 40g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

Time(hr)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.0257	-3.66126	0.0341
0.25	0.02592	-3.65274	0.0541
0.50	0.0321	-3.4389	
0.75	0.0386	-3.2545	
1.00	0.0437	-3.13041	

表 B34 在 40°C 下,基質濃度 70g/L,黑麴菌成長之動力數據

圖 B34 微生物在 40°C, 70g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)

Time (h)	Abs	Ln Abs	μ (h ⁻¹)
0.00	0.0264	-3.63515	0.0332
0.25	0.0266	-3.62684	0.0552
0.50	0.0329	-3.41428	
0.75	0.0396	-3.22893	
1.00	0.0438	-3.12812	

表 B35 在 40°C 下、基質濃度 100g/L,黑麴菌成長之動力數據

圖 B35 微生物在 40°C, 100g/L 基質濃度(pH = 5.1)下,光學密度變化圖 (600nm)
Glucose conc. (g/L)	μ_{exp} .(h ⁻¹)	$\mu_{pred.}(h^{-1})$
10	0.0347	0.032181
20	0.0354	0.035182
40	0.0374	0.036902
70	0.0341	0.037692
100	0.0332	0.038018

表 B36 40°C 下各濃度實驗之μ值及 SAS 預測之μ值統整表

圖 B36 黑麴菌比生長動力模式 (Monod Mondel) 圖

$T(^{\circ}C)$ $T(K)$	1/T	10g/L	20g/L	40g/L	70g/L	100g/L	
1(0)	1(K)	1/1			lnμ		
20	293	0.003411223	-3.38434	-3.3639	-3.329807386	-3.41733	-3.45144
22.5	295	0.003382378	-3.30771	-3.28075	-3.203987212	-3.3326	-3.3697
25	298	0.003354016	-3.23145	-3.21389	-3.107781777	-3.25192	-3.30226
27.5	301	0.003326127	-3.1559	-3.1396	-3.051244983	-3.17486	-3.22138
30	303	0.003411223	-3.38434	-3.3639	-3.329807386	-3.41733	-3.45144

表 B37 各溫度下,黑麴菌比生長速率與溫度之關係 (ln μ vs. 1/T)

圖 B37 在 pH= 5.1 下,基質濃度 10~100 g/L 時,黑麴菌比生長速率與溫度之關係 (ln μ vs. 1/T)

T (°C)	10g/L	20g/L	40g/L	70g/L	100g/L
1(0)			μ (h ⁻¹)		
20	0.0339	0.0346	0.0358	0.0328	0.0317
22.5	0.0366	0.0376	0.0406	0.0357	0.0344
25	0.0395	0.0402	0.0447	0.0387	0.0368
27.5	0.0426	0.0433	0.0473	0.0418	0.0399
30	0.0408	0.0415	0.0441	0.0398	0.0378
35	0.0367	0.0375	0.0399	0.0356	0.0348
40.00	0.0347	0.0354	0.0374	0.0341	0.0332

表 B38 各溫度下,黑麴菌比生長速率與溫度之關係 (µ vs. T)

圖 B38 在 pH= 5.1 下,基質濃度 10~100 g/L 時,黑麴菌比生長速率與溫度之關係 (μ vs. T)

6.8 黑麴菌之 pH 效應

6.8.1 溫度 30°C, 40g/L 葡萄糖下黑麴菌之 pH 效應

рН	$\mu_{exp.}(h^{-1})$	$\mu_{pred.}(h^{-1})$
1	0.2635	0.000352526
2	0.3719	0.003523541
3	0.7665	0.035064628
3.5	1.2184	0.334415138
4	2.4541	0.951270373
4.1		2.276056893
4.2		2.620739236
4.3		2.97681558
4.4		3.333346064
4.5	3.4637	3.678275552
4.6		3.999451074
4.7		4.285599817
4.8		4.527074002
4.9		4.716258263
5	5.0437	4.847650721
5.1		4.917722377
5.2		4.924701309
5.3		4.868415481
5.4		4.750275438
5.5	4.7011	4.573405336
6	2.3573	4.342855985
8	0.5975	2.698454655
9	0.0177	0.43560091
10	0.0022	0.046356557

表 C01 溫度 30°C, 40g/L 葡萄糖下黑麴菌之 pH 效應

圖 C01 在溫度 30°C, 40g/L 葡萄糖時,黑麴菌比生長速率之 pH 效應曲線

7. 實驗結果

本次實驗包括分析方法建立、文獻中纖維水解菌株篩選與培養、生長動力實驗、纖維素水解菌 株比生長最佳操作條件等,分析方法包括醣類分析與測定、酵素分析與測定、菌株濃度測定等項, 結果分述如下:

7.1 醣類分析與測定

7.1.1 分析方法:

採用高效液相層析(High Performance Liquid Chromatography), Ca 基離子交換層析管柱, 折射率(RI)偵測器等設備偵測醣類。

7.1.2 實驗儀器:

高效液相層析儀 (High Performance Liquid Chromatography, HPLC)

Waters-600E 型多溶媒輸送系統

Waters-717 plus 型樣品自動注射器

Waters-2487 紫外光/可見光偵測器

7.1.3 分析條件管柱:正相層析管柱(SUPELCO 59305-U SUPELCOGEL[™] Ca HPLC Column, 9µm particle size, length × I.D: 30cm × 7.8mm)

7.1.4 HPLC 操作條件:溫度 80 ℃,移動相:DI-Water,流速:0.5mL/min,折射率(RI)偵測器。

分析條件	正相層析 (Cat NO.59305-U 13268)
溫度(加熱器)	25 °C(80 °C)
移動相	DI-Water
流速 (mL/min)	0.5
偵測器	RI
壓力(psi)	$560 \sim 600$

表 D01 醣類之 HPLC 分析結果

醣類	滯留時間(R.T.)(min.)	積分面積
木聚糖 (Xylan)	7.348	709051
纖維水解酵素 (Cellulase)	7.808	115266
纖維五糖 (Cellopentaose)	8.237	250168
纖維四糖 (Cellotetraose)	8.308	473141
纖維三糖 (Cellotriose)	9.063	246318
纖維二糖 (Cellobiose)	10.249	1335336
蔗糖 (Sucrose)	10.450	1706176
麥芽糖 (Maltose)	10.606	1299774
乳糖 (Lactose)	10.946	1353955
葡萄糖 (Glucose)	12.752	1478458
半乳糖 (Galactose)	13.947	1299034
木糖 (Xylose)	13.955	1366342
甘露糖 (Mannose)	14.402	1286161
果糖 (Fructose)	15.377	1506256
阿拉伯糖 (Arabinose)	15.829	1389951
核糖 (ribose)	27.219	1120409

(2).纖維水解酵素(Cellulase)

(4). 纖維四糖(Cellotetraose)

(6).纖維二糖(Cellobiose)

(8).麥芽糖(Maltose)

(10).葡萄糖(Glucose)

(14).果糖(Fructose)

7.2 酵素分析結果

7.2.1 纖維素水解酵素

Cellulase Report

Printing time: Wed May 07 13:06:04 2008 Injection time: Wed May 05 12:29:43 2008

File opened: L:\Cellulase lul.hw

圖 D01 纖維素水解酵素之濃度校正圖

Novozyme 188 Report

Printing time: Wed May 07 13:08:14 2008 Injection time: Wed May 05 12:42:22 2008

File opened: L:\Novozyme 188 lul.hw

圖 D02 纖維二醣水解酵素之濃度校正圖

Glucose 杉	5正曲線
濃度(ppm)	μ(h ⁻¹)
0	0
10	0.7536
9	0.649
8	0.571
7	0.497
6	0.417
5	0.363
4	0.3081
3	0.191
2	0.184
1	0.087

圖 D03 黑麴菌濃度校正曲線圖

8.1 黑麴菌 (BCRC 31494) 之比生長動力模式

8.1.1 基質濃度效應

在 25°C 及 pH 7 下,黑麴菌成長之批次動力實驗顯示;在基質為葡萄糖濃度範圍 10~100g/L 之間,黑麴菌比成長速率之基質濃度效應可以 Andrews 模式描述(圖 E01)為

Glucose (g/L)

圖 E01 黑麴菌比成長速率之基質濃度效應(Andrews model) 由上式中基質的參數,藉由統計軟體 SAS 的非線性迴歸可以獲得

$\hat{\mu}$	K _S	K_{I}	$ \mu_{c} $ (h ⁻¹)
(h ⁻¹)	(gL ⁻¹)	(gL ⁻¹)	
97	90000	0.07	0.01

表 E01 黑麴菌利用基質 Glucose 之比生長動力模式參數

由上式中基質的參數,可以推算出最大黑麴菌比成長速率之基質濃度為 S* = $\sqrt{K \cdot K_I}$ = 79.37g/L。

8.1.2 温度效應

黑麴菌成長之批次動力實驗顯示;在pH = 5.1下,基質濃度10~100 g/L,溫度20~27.5 ℃時,黑麴菌比生長速率之溫度效應可以Arrhenius plot 描述(如圖 B37 所示)。由圖上斜率可以求得:黑麴菌之生長活化能為5.377 kcal/gmol,此值遠大於傳統化學反應的活化能(10~20kcal/gmol), 顯然黑麴菌之生長速率極受溫度之影響。此外,由圖 B38 可知:黑麴菌之最佳生長溫度為27.5 ℃。

8.1.3 pH 效應

黑麴菌成長之批次動力實驗顯示;在溫度 30°C, 40g/L 葡萄糖之 pH 效應,可以 Michaelis pH function 描述如下(如圖 B39 所示):

$$\mu = \frac{\delta}{\left(1 + 10^{(k_1 - pH)} + 10^{(pH - k_2)}\right)}$$

上式中的參數,藉由統計軟體 SAS 的非線性迴歸可以獲得

表 E02 黑麴菌利用基質 Glucose 之比生長的 pH 效應模式參數

δ (h ⁻¹)	k_{I}	k_2
6.512	4.2665	5.8555

黑麴菌之最佳生長 pH 為 $(k_1 + k_2)/2 = 5.06$ 。

8.2 黑麴菌最佳生長條件

由圖 C01 可得知:黑麴菌比成長速率之基質濃度效應可以 Andrews 模式描述,基質(葡萄糖) 之濃度在 80g/L 時,即可達到最大比生長速率。

至於溫度效應方面,圖 B37 顯示黑麴菌比生長速率遵循阿忍尼亞定律(Arrhenius Law);此 外,由圖 B38 可得知黑麴菌最佳生長溫度在 27.5℃。

至於 pH 效應方面,可由圖 C01 得知:黑麴菌之比生長速率遵循 Michaelis pH 函數關係, 在使用 SAS 得知最佳理論預測值為 5.1,與實際值相差不遠;因此,最佳比生長速率在 pH 5.1。

因此在得知最佳濃度效應後,在40g/L葡萄糖與pH5.1下,繼續做溫度效應,證實溫度20°C以下及40°C以上皆不利於此黑麴菌生長。

而我們在最佳濃度及溫度下進行 pH 效應實驗,由圖 B39 得知最佳生長曲線在 pH 5.1,而在 pH 3 以下及 pH 7 以上的溶液中,皆不利於此黑麴菌生長。

8.3 黑麴菌生長活化能

由圖 B37 顯示黑麴菌比生長速率在 20~30°C 的溫度範圍內,皆遵循阿忍尼亞定律,在此溫 度範圍以外,皆不遵循阿忍尼亞定律。黑麴菌之比生長活化能為 5377cal/gmole 或 5.38 kcal/gmole。此活化能遠低於傳統化學反應活化能的 10-20 kcal/gmole,意謂黑麴菌比生長速率受溫 度影響程度不大。

8.4 纖維素水解菌株比生長最佳操作條件

由本次研究的黑麴菌、黄孢亮光伏革菌、半知菌木霉、與酵母菌等四種纖維素水解菌株比生 長動力所得實驗結果,經整理列於表 E03 與表 E04。表 E03 顯示:纖維素水解菌株比生長的最 佳操作條件,包括基質濃度效應、溫度效應、pH 效應、生長活化能等,可作為下一階段酵素量 產時反應器操作之研究的重要參考依據。 表 E04 列出黑麴菌、半知菌木霉、黄孢亮光伏革菌、與 酵母菌之比生長的 Michaelis pH 函數模式參數,由此可以求出最適於菌株生長的 pH 值(=(k₁+k₂)/2)。

		•			1 =1 11			
菌名	BCRC 編號	ATCC 編號	溫度 (°C)	pН	DO	最佳比生長速率 (h ⁻¹)	濃度效應	比生長活化能 (kcal/gmol)
黑麴菌 Aspergillus niger	31494	10864	27.5	5.06	Aerobic	5.0435	Andrews model	5.377
半知菌木霉 Trichoderma reesei	31863	26921	30	3.9	Aerobic	0.00578		
黄孢亮光伏革菌 Phanerochaete chrysosporium	36201	32629	30	5.0	Aerobic	0.0596		
酵母菌 Saccharomyces cerevisiae	20822	9763	28	4.3	Aerobic/ Anaerobic	0.627		

表 E03 纖維素水解菌株比生長最佳操作條件

表 E04 黑麴菌之比生長的 Michaelis pH 函數模式參數

菌株	δ (h ⁻¹)	k_1	k_2	最佳 pH
黑麴菌	6.512	4.2665	5.8555	5.06
半知菌木霉	0.0069	2.9322	4.9648	3.95
黄孢亮光伏革菌	0.0618	3.2639	6.7258	5.00
酵母菌	1.1133	3.9158	4.7398	4.33

8.5 纖維素水解菌株的酵素生產種類

在 3.3 節纖維素酵素水解原理中提到,纖維素水解酵素包括內切型纖維素水解酵素 (β-1,4-endoglucanase)、外切型纖維素水解酵素(β-1,4-cellobiohydrolases /Exo-cellulase)、纖維二醣水 解酵素(cellobiase/β-glucosidase)、與木糖異構酶(xylanases)等酵素,其中內切型與外切型纖維素水 解酵素用來將葡萄糖依(β1-4)結合而成的纖維素分子分別由中間和兩惻切割,形成較小分子的寡 醣,如纖維七醣、纖維六醣、纖維五醣、纖維四醣、纖維三醣、纖維二醣等,其次,再由纖維二醣 水解酵素進一步分解成葡萄單糖,作為酵母菌醱酵生產酒精所需的碳源與能源,如圖 與圖 所示。 內切型纖維素水解酵素又可分為 EG I, EG II, EG III, EG IV, 和 EG V 等五種;外切型纖維素水解酵 素又可分為 CBH I & CBH II 等兩種,而未糖異構酶又可分為 XYN I & XYN II 等兩種。

由於纖維素的來源又可分局硬木與軟木,組成粗略不同,硬木含有較高含量的六碳醣(葡萄糖) 所構成的纖維素,與少量的五碳醣(木糖)所構成的半纖維素,而軟木則反之;因此軟木水解需要利 用木糖異構酶來提高效率,軟木水解後大多形成五碳醣的木糖,對於酒精醱酵的酵母菌而言,也是 可以有效利用的碳源與能源。此外,木材組成中含量約略與纖維素、半纖維素相當的木質素(lignin) 的有效利用,是目前研究上的技術盲點,有可能需要應用到木腐黴菌來分解,木腐黴菌大致上可依 其顏色分為白色、棕色、與綠色等三大類,大多具有木質素水解酵素的分泌能力。

表 2 列出黑麴菌(BCRC 31130)與黑麴菌(BCRC 31494)相關資料,表 3 列出含纖維素水解酵素 的菌株資料庫,表 4 整理出可分泌多種纖維水解酵素的菌株與其分泌酵素種類,表 5 列出本研究選 出的纖維水解菌株,至於已完成研究的菌株包括黑麴菌、黄孢亮光伏革菌、半知菌木霉、與酵母菌 等四種纖維素水解菌株,纖維素水解菌株比生長最佳操作條件列於表 E03。 由表 2 黑麴菌相關資料中,可以看出黑麴菌(BCRC 31494)可以比黑麴菌(BCRC 31130)分泌更多的纖維素水解酵素,因此,黑麴菌(BCRC 31494)被選為研究用菌株。

由表4可分泌多種纖維水解酵素的菌株與其分泌酵素種類中,可以看出:可以分泌內切型與外切型纖維素水解酵素、纖維二醣水解酵素、與木糖異構酶等四種酵素的菌株,只有半知菌木霉(Trichoderma reesei),能夠分泌三種酵素的菌株,包括黑麴菌(Aspergillus niger)、卷枝毛黴(Mucor circinelloides)等,能夠分泌兩種酵素的菌株,包括綠木黴(Trichoderma viride)、康寧木腐黴(Trichoderma koningii)、風乾菌(Scierotium rolfsii UV-8)、酵母菌(Saccharomyces cerevisiae)等,而黄孢亮光伏革菌(Phanerochaete chrysosporium)只能分泌一種酵素--外切型纖維素水解酵素;但是由於黄孢亮光伏革菌是一種白腐菌,也能分泌木質素水解酵素,因此,可以分解木材,所以對於木質纖維素的水解,仍有賴黃孢亮光伏革菌。

因此,菌株的研究優先順序如下:半知菌木霉 > 黑麴菌,卷枝毛黴 > 酵母菌,綠木黴,康寧 木腐黴,風乾菌 > 黃孢亮光伏革菌。

8.6 未來纖維素水解酵素生產的研究方向

列於表 5 中所選出的纖維水解菌株中,除了本次研究的黑麴菌、黃孢亮光伏革菌、半知菌木霉、 與酵母菌等四種纖維素水解菌株外,尚待進一步探討的菌株,包括綠木黴(Trichoderma viride)、康 寧木腐黴(Trichoderma koningii)、風乾菌(Scierotium rolfsii UV-8)、卷枝毛黴(Mucor circinelloides)等 四種纖維素水解菌株的比生長速率動力實驗,其次,進行纖維素水解、半纖維素水解、與木質素水 解的菌株篩選;還有菌株生產酵素的生化分離技術探討。至於纖維素水解酵素與基質、酵素與酵素 間的抑制作用,有待從文獻中整理與動力探討,以供酒精醱酵之製程設計參考。 綜合以上的實驗觀察結果,可以歸納以下結論

- 黒麴菌(BCRC 31494)之比生長動力模式,在基質為葡萄糖濃度範圍 10~100g/L 之間,基質濃度效應可以 Andrews 模式描述, Andrews 模式參數為μ[^] = 97 h⁻¹, K_S = 90000 g/L, K_I = 0.07 g/L, μ_c = 0.01 h⁻¹,最大黑麴菌比成長速率之基質濃度為 79.37 g/L。
- 2. 黑麴菌比生長速率之溫度效應,在 pH = 5.1,基質濃度 10~100 g/L 及溫度 20~27.5 ℃ 時,黑麴 菌比生長速率之溫度效應可以 Arrhenius plot 描述,黑麴菌之生長活化能為 5.377 kcal/gmol;黑 麴菌之最佳生長溫度為 27.5 ℃。
- 黒麴菌比生長速率之 pH 效應,在溫度 30°C, 40g/L 葡萄糖下,可以 Michaelis pH 函數描述, Michaelis pH 函數之參數如下:δ=6.512 h⁻¹, k₁=4.2665, k₂=5.8555, 黑麴菌之最佳生長 pH 為 5.06。
- 4. 纖維水解菌株之比生長速率的 pH 效應,可以得知最適於菌株生長的 pH 值如下:黑麴菌 5.06, 半知菌木霉 3.95, 黃孢亮光伏革菌 5.00, 酵母菌 4.33。
- 3. 纖維水解菌株之比生長速率的 pH 效應,可以得知 Michaelis pH 函數模式參數(δ,k₁, k₂)值分別 如下:黑麴菌(6.512, 4.2665, 5.8555),半知菌木霉(0.0069, 2.9322, 4.9648),黄孢亮光伏革菌(0.0618, 3.2639, 6.7258),酵母菌(1.1133, 3.9158, 4.7398)。
- 6. 黑麴菌、半知菌木霉、黄孢亮光伏革菌、酵母菌等菌株的比生長速率皆符合 Arrhenius Law 模式所描述之結果。最佳比生長速率之溫度值分別為:黑麴菌(27.5 ℃)、半知菌木霉(30 ℃)、黄孢亮光伏革菌(30 ℃)、臺灣本土根瘤菌(35 ℃)、與酵母菌(28 ℃)等結果。
- 7. 纖維素水解產物—纖維寡醣之 HPLC 分析結果,各成分之滯留時間(min.)順序中,除了纖維四 糖(8.308)與纖維五糖(8.237)、纖維二糖(10.249)與蔗糖(10.450)與麥芽糖(10.606)、半乳糖(13.947) 與木糖(13.955)外,其餘皆無分析上的解析問題,甚至於兩種酵素:纖維素水解酵素(4.041)、纖 維二醣水解酵素(3.337),也可精確地分析。標定用纖維二醣水解酵素為黑麴菌(Aspergillus niger) 產製,商品名 Nomozyme 188,纖維素水解酵素為半知菌木霉(Trichoderma reesei, ATCC 26921) 所產製。
- 8. 菌株濃度可以菌株的乾細胞重(dry cell weight, DCW)量測。

- 洪正峰,黑黴菌屬游離態及固定化的β-葡萄糖苷酶進行纖維寡醣及烷基醣苷類化合物生成之研究,大同大學生化工程研究所碩士論文 (2001/7)
- 2. 閻伯旭, 絲狀真菌纖維素酶的结構與功能, 山東大學博士論文 (1997/2) http://www.cdgdc.edu.cn/yxbslw/pxjg/2001/yanboxu.htm
- 趙紹惠和大衛摩亞,解讀真菌的形態發育,第三課:真菌之生物化學,香港中文大學生物系 <u>http://ihome.cuhk.edu.hk/~b456741/chapters/chapter3.htm</u>
- 4. cellulase http://www.enzymeindia.com/enzymes/cellulase.asp
- 江善宗、殷儷容,纖維素水解酵素於綠藻工業之應用研究,農業生技產業季刊第七期,p.26-36 (2006)
- 江 晃 榮 , 改 造 微 生 物 生 產 化 學 品 (下), 科 學 月 刊 <u>1985 年 05 月 185 期</u>, <u>http://210.240.178.2/science30/disc1/content/1985/00050185/index.htm</u>
- Feng Xu, Hanshu Ding, "A new kinetic model for heterogeneous (or spatially confined) enzymatic catalysis_Contributions from the fractal and jamming (overcrowding) effects," *Applied Catalysis* A: General **317**, 70–81 (2007)
- 8. M. Tenkanen, J. Buchert and L. Viikari, "Binding of hemicellulases on isolated polysaccharide substrates," *Enzyme and Microbial Technology*, **17**, 499-505 (1995)
- M. Ike, Y. Ko, K. Yokoyama, Jun-Ichi Sumitani, T. Kawaguchi, W. Ogasawara, H. Okada, and Y. Morikawa, "Cellobiohydrolase I (Cel7A) from Trichoderma reesei has chitosanase activity," *Journal of Molecular Catalysis* B: Enzymatic 47, 159–163 (2007)
- 10. A.S. Bommarius, A. Katona, S.E. Cheben, A.S. Patel, A.J. Ragauskas, K. Knudson, and Y. Pu, "Cellulase kinetics as a function of cellulose pretreatment," *Metab. Eng.*, (2008)
- 11. T. Kajisa, M. Yoshida, K. Igarashi, A. Katayama, T. Nishino, and M. Samejima, "Characterization and Molecular Cloning of Cellobiose Dehydrogenase from the Brown-Rot Fungus *Coniophora puteana*," *journal of Biosci. and Bioeng.*, **98**(1), 57–63 (2004)
- 12. T. Nagy, R.B. Tunnicliffe, L.D. Higgins, C. Walters, H.J. Gilbert, and M.P. Williamson, "Characterization of a Double Dockerin from the Cellulosome of the Anaerobic Fungus *Piromyces equi*," J. Mol. Biol., **373**, 612–622 (2007)
- 13. S. D. Mansfield, J. N. Saddler, and G. M. Gübitz, "Characterization of endoglucanases from the brown rot fungi *Gloeophyllum sepiarium* and *Gloeophyllum trabeum*," *Enzyme and Microbial Technology*, **23**, 133-140, (1998)
- J. Caspi, D. Irwin, R. Lamed, Y. Li, Henri-Pierre Fierobe, D.B. Wilson, E.A. Bayer, "Conversion of *Thermobifida fusca* free exoglucanases into cellulosomal components: Comparative impact on cellulose-degrading activity," *Journal of Biotech.*, 135, 351–357 (2008)
- J.B"orjesson, M. Engqvist, B'alint Sipos, F. Tjerneld, "Effect of poly(ethylene glycol) on enzymatic hydrolysis and adsorption of cellulase enzymes to pretreated lignocellulose," *Enzyme and Microbial Technology*, 41, 186-195, (2007)
- 16. V. Sild, Jerry StAhlberg, G&-an Pettersson, G. Johansson, "Effect of potential binding site overlap to binding of cellulase to cellulose: a two-dimensional simulation," *FEBS Letters* **378**, 51-56 (1996)
- 17. Y. Qin, X. Wei, X. Song, Y. Qu, "Engineering endoglucanase II from *Trichoderma reesei* to improve the catalytic efficiency at a higher pH optimum," *Journal of Biotech.*, **135**, 190–195 (2008)
- 18. M. Schiilein, "Enzymatic properties of cellulkes from *Humicola insolens*," *Journal of Biotech.*, **57**, 71–81 (1997)
- 19. J. Karlsson, M. Siika-aho, M. Tenkanen, and Folke Tjerneld, "Enzymatic properties of the low

molecular mass endoglucanases Cel12A (EG III) and Cel45A (EG V) of *Trichoderma reesei*," *Journal of Biotech.*, **99**, 63–78 (2002)

- 20. V.V. Zverlov, W. H.oll, W.H. Schwarz, "Enzymes for digestion of cellulose and other polysaccharides in the gut of longhorn beetle larvae, *Rhagium inquisitor* L. (Col., Cerambycidae)," *International Biodeterioration & Biodegradation*, **51**, 175 – 179 (2003)
- Z. Benko, M. Siika-aho, L. Viikari, Kati Réczey, "Evaluation of the role of xyloglucanase in the enzymatic hydrolysis of lignocellulosic substrates," *Enzyme and Microbial Technology*, 43, 109-114, (2008)
- 22. R. Marcarron, B. Henrissat, and M. Claeyssens, "Family a cellulases_ two essential tryptophan residues in endoglucanase III from *Trichoderma reesei*," *Biochimica et Biophysica Acta*, **1245**, 187-190 (1995)
- R.D. Haan, J.E. Mcbride, Daniël C. La Grange, L.R. Lynd, and W.H. Van Zyl, "Functional expression of cellobiohydrolases in *Saccharomyces cerevisiae* towards one-step conversion of cellulose to ethanol," *Enzyme and Microbial Technology*, 40, 1291-1299, (2007)
- 24. N. Szijarto, M. Siika-aho, M. Tenkanen, M. Alapuranen, J. Vehmaanpera, K. Reczey, L. Viikari, "Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of *Melanocarpus albomyces*," *Journal of Biotech.*, **136**, 140–147 (2008)
- 25. N. Andersen, K.S. Johansen, M. Michelsen, E.H. Stenby, Kristian B.R.M. Krogh, L. Olsson, "Hydrolysis of cellulose using mono-component enzymes shows synergy during hydrolysis of phosphoric acid swollen cellulose (PASC), but competition on Avicel," *Enzyme and Microbial Technology*, 42, 362-370, (2008)
- 26. J. Zhou, Y.-H. Wang, J. Chu, Y.-P. Zhuang, S.-L. Zhang, P. Yin, "Identification and purification of the main components of cellulases from a mutant strain of *Trichoderma viride* T 100-14," *Bioresource Technology*, 99, 6826–6833 (2008)
- P. Tomme and M. Claeyssens, "Identification of a functionally important carboxyl group in cellobiohydrolase I from *Trichoderma reesei*: A chemical modification study," *FEBS Letters*, 243(2), 239-243 (1989)
- 28. S. Bhat, E. Owen, and M.K. Bhat, "Isolation and Characterisation of a Major Cellobiohydrolase (S₈) and a Major Endoglucanase (S₁₁) Subunit from the Cellulosome of *Clostridium thermocellum*," *Anaerobe*, **7**, 171-179 (2001)
- 29. M.G. Tuohy, D.J. Walsh, P.G. Murray, M. Claeyssens, M.M. Cuffe, A.V. Savage, M.P. Coughlan, "Kinetic parameters and mode of action of the cellobiohydrolases produced by *Talaromyces emersonii*," *Biochimica et Biophysica Acta*, **1596**, 366-380 (2002)
- 30. H.V. Tilbeurgh, P. Tomme, M. Michelsen, R. Bhikhabhai, and G. Pettersson, "Limited proteolysis of the cellobiohydrolase I from *Trichoderma reesei*," *FEBS Letters*, **204**(2), 223-227 (1986)
- 31. G.J. Davies, V. Ducros, R.J. Lewis, T.V. Borchert, and M. Schülein, "Oligosaccharide specificity of a family 7 endoglucanase: insertion of potential sugar-binding subsites," *Journal of Biotech.*, **57**, 91–100 (1997)
- 32. J. Zhou, Y.-H. Wang *, J. Chu, L.-Z. Luo, Y.-P. Zhuang, S.-L. Zhang, "Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments," *Bioresource Technology*, **100**, 819–825 (2009)
- 33. I.J. Szab6, G. Johansson, and G. Pettersson, "Optimized cellulase production by *Phanerochaete chrysosporium:* control of catabolite repression by fed-batch cultivation," *Journal of Biotech.*, **48**, 221–230 (1996)
- 34. M.D. Shultz, J.P. Lassig, M.G. Gooch, B.R. Evans, and J. Woodward, "Palladium A New Inhibitor of Cellulase Activities," *Biochem. Biophys.Res.Comm.*, **209**(3), 1046-1052 (1995)

- 35. K. Piyachomkwan, K.P. Gable, and M.H. Penner, "*p*-Aminophenyl 1-thio-b-cellobioside: Synthesis and application in affinity chromatography of exo-type cellulases," *Carbohydrate Research*, **303**, 255-259 (1997)
- 36. K. Sangseethong and M.H. Penner, "*p*-Aminophenyl b-cellobioside as an affinity ligand for exo-type cellulases," *Carbohydrate Research*, **314**, 245–250 (1998)
- 37. F. Xu, H. Ding, D. Osborn, A. Tejirian, K. Brown, W. Albano, N. Sheehy, and J. Langston, "Partition of enzymes between the solvent and insoluble substrate during the hydrolysis of lignocellulose by cellulases," *Journal of Molecular Catalysis* B: Enzymatic 51, 42–48 (2008)
- 38. Badal C. Saha, "Production, purification and properties of endoglucanase from a newly isolated strain of *Mucor circinelloides*," *Process Biochemistry*, **39**, 1871–1876 (2004)
- 39. Martin Schülein, "Review Protein engineering of cellulases," *Biochimica et Biophysica Acta*, **1543**, 239-252 (2000)
- 40. K. Murashima, T. Nishimura, Y. Nakamura, J. Koga, T. Moriya, N. Sumida, T.Yaguchi, and T. Kono, "Purification and characterization of new endo-1,4-β-D-glucanases from *Rhizopus oryzae*," *Enzyme and Microbial Technology*, **30**, 319–326 (2002)
- 41. Y. Qin, X. Wei, X. Liu, T. Wang, and Y. Qu, "Purification and characterization of recombinant endoglucanase of *Trichoderma reesei* expressed in *Saccharomyces cerevisiae* with higher glycosylation and stability," *Protein Expression and Purification* **58**, 162–167 (2008)
- 42. Cheorl-Ho Kim* and Dong-Soo Kim, "Purification and specificity of a specific endoβ-1,4-D-glucanase (Avicelase II) resembling exo-cellobiohydrolase from *Bacillus circulans*," *Enzyme and Microbial Technology*, **17**, 248-254, (1995)
- 43. A.V. Gusakov, A.P. Sinitsyna, T.N. Salanovich, F.E. Bukhtojarov, "Purification, cloning and characterisation of two forms of thermostable and highly active cellobiohydrolase I (Cel7A) produced by the industrial strain of *Chrysosporium lucknowense*," *Enzyme and Microbial Technology*, **36**, 57-69, (2005)
- 44. L.H.H. Silvertand , J. Sastre Tora no, W.P. van Bennekom, and G.J. de Jong, "Review Recent developments in capillary isoelectric focusing," *Journal of Chromatography* A, **1204**, 157–170 (2008)
- 45. H. van Tilbeurgh, R. Bhikhabhai, L. G. Pettersson and M. Claeyssens, "Separation of endo- and exo-type cellulases using a new affinity chromatography method," *FEBS LETTERS*, **169**(2), 215-248 (1984)
- 46. A.V. Gusakov, A.P. Sinitsyn, and A.V. Markov, O.A. Sinitsyna, N.V. Ankudimova, and A.G. Berlin, "Study of protein adsorption on indigo particles confirms the existence of enzyme-indigo interaction sites in cellulase molecules," *Journal of Biotechnology* 87, 83–90 (2001)
- 47. E. Hoshino, M. Shiroishi, Y. Amano, M. Nomura and T. Kanda, "Synergistic Actions of Exo-Type Cellulases in the Hydrolysis of Cellulose with Different Crystallinities," *journal of Ferm. and Bioeng.*, **84**(4), 300-306 (1997)
- 48. Lars G. Fagerstam and L.G. Pettersson, "The 1.4-β-Glucan Cellobiohydrolases of *Trichoderma reesei* QM 9414 A new type of cellulolytic synergism," *FEBS LETTERS*, **119**(1), 97-100 (1980)
- 49. H. Chanzy, B. Henrissat, R. Vuong and M. Schiilein, "The action of 1,4-β-D-glucan -ellobiohydrolase on *Valunia* cellulose microcrystals - An electron microscopic study," *FEBS LETTERS*, **153**(1), 113-118 (1983)
 - ♥ N. Hayashi, J. Sugiyama, T. Okano, and M. Ishihara, "The enzymatic susceptibility of cellulose microfibrils of the algal bacterial type and the cotton ramie type," *Carbohydrate Research*, 305, 261–269 (1998)
- 50. F.A. Genta, A.F. Dumont, S.R. Marana, W.R. Terra, and C. Ferreira, "The interplay of

processivity, substrate inhibition and a secondary substrate binding site of an insect exo- β -1,3-glucanase," *Biochimica et Biophysica Acta* **1774**, 1079–1091 (2007)

- 51. F. Limam, S.E. Chaabouni, R. Ghrir and N. Marzouki, "Two cellobiohydrolases of *Penicillium* occitanis mutant Pol 6: Purification and properties," *Enzyme and Microbial Technology*, **17**, 340-346 (1995)
- 52. K.M. Choa, Y.J. Yoo, and H.S. Kang, "δ-Integration of endo/exo-glucanase and β-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol," *Enzyme and Microbial Technology*, **25**, 23–30 (1999)

明新科技大學 97 年度 研究計畫執行成果自評表

計 畫 類 別 : □任務導向計畫 □整合型計畫 ☑個人計畫	
所 屬 院(部): ⊻工學院 □管理學院 □服務學院 □通識教育部	
執行系別: 化工系(所)	
計畫主持人: 王峻賢 職稱:副教授	
計 畫 名 稱 : 纖維水解菌株篩選、水解酵素分離純化、與酵素生產生質酒精製程最適位	化。
計 畫 編 號 : MUST-97-化工-05	
計畫執行時間: 97年3月1日至97年9月30日	
1.對於改進教學成果方面之具體成效:	
一 確立發酵程序的設備採購、操作與維護,建立生化反應器的動力研究方法。	
 □ 叙 □ □ 2.對於提昇學生論文/專題研究能力之具體成效: 	
大 教導學生有關發酵程序的操作步驟、取樣分析方法、與程序控制策略。	
計 面 3.其他方面之具體成效: 菌株培養活化、菌相觀察、發酵配方調整、儀器分析方	
書 法、數據處理分析、最佳操作條件之探討等。	
 単 払 	
钒 1.該計畫是否有衍生出其他計畫案 □是 ✓否	
行 學 計畫名稱:	
成 術 2.該計畫是否有產生論文並發表 □已發表 ☑預定投稿/審查中 □否	
效 研 發表期刊(研討會)名稱: <u>Journal of the Chinese Institute of Chemical Engineerin</u>	g
究 發表期刊(研討會)日期: <u>98年6月</u> 日	·
方 3.該計畫是否有衍生產學合作案、專利、技術移轉等,請說明:一升科技產学合作	乍条
	之枉
計畫預期目標:	
反應條件包括基質(葡萄糖)濃度、溫度、及 pH 等,對於菌種比成長速率與產	品
產率之影響。建立批次醱酵之生長動力學模式與產品產率預測模式。最後進行	亍程
成 序最適化之理論研究。	
自 目前已完成纖維水解菌株篩選,如黑麴菌、半知菌不薄、貢把完光伏中国、四	孝女 日 4
副寻固林的比生衣取住猕非体的,也元成数人批人效时到儿~小九,九次, 。 副子固林的比生衣取住猕非体的,也无成数人批人效时到儿~小九,九次, 二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、	4 生
在工具但俯驰八瞰时~庄吅庄主···································	/ 0
(若不敷使用請另加附頁繕	, 寫)
上一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	
六七六胆 城 双· 1 建立分析、取槎方法。	
2. 確立發酵槽操作步驟。	
3. 確立菌株馴養、活化方法。	
4. 確立數據擷取、處理方法。	
5. 建立程序最適化步驟。	·· ·
(若不敷使用請另加附負約	善寫)