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中文摘要 

ㄧ個連結網路(interconnection network)的拓譜結構(topological structure)可以用

一個圖型 G = (V,E )來表示，其中V 代表圖型G 的節點(vertex)集合、E 代表圖型G

的鏈結(edge)集合。圖型 的節點子集合以 V′表示，我們定義 G[V′]是在圖型 G 中

節點 V′引導出的子圖(subgraph)，G[V′]是包含節點 V′以及在節點 V′中任兩節點間

所組成的所有鏈結(edge)圖型。ㄧ個圖型的 m-引導子圖是經由給定 m 個節點所引

導出的圖形。一個圖型 G 的最大引導子圖我們以
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。令 maxm(G)是最大引導子圖 中包

含的鏈結數目。圖型 G 的最大引導子圖對於網路容錯(fault tolerance)與頻寬

(bandwidth) 之估算有其應用。令 m 是一個正整數，其中 且 
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。2003 年 Abdel-Ghaffar 證明

了在 n-維超立方體(hypercubes)Qn中，當 n ≥1 且 0 ≤ m ≤ 2n時，maxm(Qn) = g(m)。

在那之後，遞迴環狀圖(recursive circulant graphs)的最大引導子圖也在 2005 年由

X. Yang 等人提出。我們以遞迴的方式對 n ≥ 0 的廣義超立方體(generalized 

hypercubes) GQn 做一個定義。所有超立方體，雙扭立方體、交叉立方體與梅氏立

方體都是廣義超立方體的特例。在本研究中，我們證明當 n ≥ 3 且 0 ≤ m ≤ 2n 時，

maxm(GQn) = g(m)。我們也提出一個演算法可以找到廣義超立方體的最大引導子

圖。 

關 鍵 詞：最大引導子圖、超立方體、雙扭立方體、交叉立方體、梅氏立方體、

廣義超立方體。 
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Abstract 

The topological structure of an interconnection network can be modeled by a graph 

G = (V, E) where V is the vertex set and E the edge set of G. For a vertex subset V′ of 

graph G, the subgraph of G induced by V′, denoted by G[V′], is a graph with vertex set 

V′ and all the edges of G with both ends of vertices in V′. An m-induced subgraph of a 

graph is such one which induced by m vertices. A maximum m-induced subgraph of a 

graph G, denoted by , can be defined as ( )GVm
max ( ) ( ){ }

mVVV
VGEVGGVm

=′⊆′
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Let maxm(G) be the number of edges in such a maximum m-induced subgraph ( )GVm
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Maximum m-induced subgraph of graph G has applications in the evaluation of fault 

tolerance and bandwidth of networks. Let m be an integer with m and 
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For an n-dimensional hypercube Qn , it is 

proved by Abdel-Ghaffar in 2003 that maxm(Qn) = g(m) for n ≥1 and 0 ≤ m ≤ 2n. After 

that, maximum m-induced subgraph of the recursive circulant graphs has proposed by 

X. Yang et al. in 2005. We recursively define generalized hypercubes, denoted by GQn , 

for n ≥ 0. All of hypercubes, twisted cubes, crossed cubes, and möbius cubes are special 

cases of generalized hypercubes. In this paper, we prove that maxm(GQn) = g(m) for n ≥ 

3 and 0 ≤ m ≤ 2n. We also provide an algorithm to find the maximum m-induced 

subgraph of generalized hypercubes. 
 

Keywords: maximum m-induced subgraph, hypercubes, twisted cubes, crossed cubes, 
möbius cubes, generalized hypercubes. 
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1 Introduction

The topological structure of an interconnection network can be modeled by a graph, while

vertices represent processors and edges represent links between processors. For the purpose

of connecting hundreds or thousands of processing elements, many interconnection network

topologies have been proposed in literature. Graph theory can be used to analyze the networks

and most of the graph definitions we use are standard [4]. Terms networks and graphs are used

interchangeably in this paper.

Given a graph G = (V, E) where V is the vertex set and E the edge set of G. For a vertex

subset V ′ of graph G, the subgraph of G induced by V ′, denoted by G[V ′], is a graph with

vertex set V ′ and all the edges of G with both ends of vertices in V ′. An m-induced subgraph

of a graph is such one which induced by m vertices [16]. A maximally m-induced subgraph of a

graph G, denoted by V max
m (G), can be defined as

V max
m (G) = {G[V ′] | max

V ′⊆V,|V ′|=m
|E(G[V ′])|}.

Let maxm(G) be the number of edges in such a maximally m-induced subgraph V max
m (G).

The n-dimensional hypercube [3], denoted by Qn, is an undirected graph with 2n vertices, which

consists of all n-bit binary strings as its vertices. Take Q3 for an instance, let V1 be the vertex set

{000, 001, 011, 111}, then E(Q3[V1]) = {(000, 001), (001, 011), (011, 111)}. However, let V2 be

the vertex set {000, 001, 011, 010}, then E(Q3[V2]) = {(000, 001), (001, 011), (011, 010), (010, 000)}.

Actually, max4(Q3) = 4. To maximize the number of edges joining vertices of a vertex set with

m vertices of a graph is an important issue in this research.
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Let m =
∑r−1

i=0 2li , where l0 > l1 > · · · > lr−1 ≥ 0. For an n-dimensional hypercube

Qn, it is proved in [1] that maxm(Qn) =
∑r−1

i=0 ( li
2

+ i)2li . For the recursive circulant graphs

RC(2n, 4), the value of maxm(RC(2n, 4)) is proved in [16]. The results of maximally m-induced

subgraph have applications in the evaluation of fault tolerance and bandwidth of networks.

Maximizing the number of transitions corresponding to single edges may decrease the power

consumption because of switching activities in processors [14]. In addition, they also relate to

electromechanical or optical sensors [16]. The same technique also can be used to facilitate

browsing of documents in libraries and data storage systems [12]. Some other applications can

be seen in [1].

The n-dimensional hypercube, denoted by Qn, is a popular network because of its attrac-

tive properties, including regularity, symmetry, small diameter, strong connectivity, recursive

construction, partitionability, and relatively low link complexity [3, 11, 13]. There are some vari-

ations of the hypercube Qn appearing in literature, such as twisted cubes [2, 10], crossed cubes

[9, 15], and möbius cubes [8, 15]. These variations preserve most of the good topological prop-

erties of the hypercube, and even better. For example, the diameter of these variation cubes is

around half of that of the hypercube. Recently, the twisted cubes, crossed cubes, and möbius

cubes are proved to be super connected and super fault-tolerant hamiltonian graphs [5, 7]. We

define a generalization of those graphs. The n-dimensional generalized hypercubes, denoted by

GQn, are generalizations of the the n-dimensional twisted cubes TQn, crossed cubes CQn, and

möbius cubes MQn. Let r and l0 > l1 > · · · > lr−1 be nonnegative integers with m =
∑r−1

i=0 2li .

In this paper, we show that maxm(GQn) =
∑r−1

i=0 ( li
2
+i)2li for n ≥ 3 and 0 ≤ m ≤ 2n. Moreover,
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we provide an algorithm to find the maximally m-induced subgraph V max
m (GQn) of graph GQn

for n ≥ 3 and 0 ≤ m ≤ 2n.

The rest of this paper is organized as follows. Section 2 starts with the definition of gener-

alized hypercubes and defines the function g(m). Section 3 forms the main result of the paper.

In Section 4, we give the conclusion remarks.

2 Preliminary

Motivated by the recursively structure of the hypercubes, crossed cubes, twisted cubes, and

möbius cubes, we have the following n-dimensional generalized hypercubes, denoted by GQn.

The GQn for n ≥ 0 is recursively defined as follows. For n = 0, GQ0 is a vertex. For n = 1, GQ1

is isomorphic to the 1-dimensional hypercube Q1 with vertex set {0, 1} and edge set {(0, 1)}.

As for n ≥ 2, GQn consists of (1) two not necessarily identical GQn−1’s, denoted by GQ0
n−1 and

GQ1
n−1; and (2) an arbitrary perfect matching with 2n−1 edges between the two GQn−1’s, each

vertex in GQ0
n−1 is adjacent to exactly one vertex in GQ1

n−1. The n-dimensional generalized

hypercubes GQn for n = 1, 2 are shown in Figure 1, in which the edge set of GQ2 has two

different situations. Figure 2 illustrates labels of the vertex set of GQn.

GQ
1

(a) GQ
2

(b)

0 1 01 11
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01 11
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1

1GQ
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1GQ
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0

Figure 1: (a) GQ1; (b) Two situations of GQ2.

3



110v
n-4

...v
1
v

0

GQ
n-1

GQ
n-2

GQ
n-3

GQ
n-4

GQ
0

GQ
n

10v
n-3

...v
1
v

0

1110v
n-5

...v
1
v

0

0v
n-2

...v
1
v

0

11...10

11...11

Figure 2: Labels of the vertex set of GQn.

Now, the Function g(m) is defined as the following. Let m be an integer with m =
∑r−1

i=0 2li

and l0 > l1 > · · · > lr−1. Then, g(m) =
∑r−1

i=0 ( li
2

+ i)2li . As an example, for n = 86 =

26 + 24 + 22 + 21, g(86) = (6/2 + 0)26 + (4/2 + 1)24 + (2/2 + 2)22 + (1/2 + 3)21 = 259.

3 Maximally m-induced Subgraph of Generalized Hy-

percubes

In this section, we state and show the main result that given a generalized hypercube GQn for

n ≥ 3 and an integer m for 0 ≤ m ≤ 2n, we have that maxm(GQn) = g(m). In order to prove

it, the following lemma is needed.

Lemma 1 [16] For any nonnegative integers m0,m1, g(m0+m1) ≥ g(m0)+g(m1)+min{m0,m1}.

The following lemma shows that for n ≥ 3 and 0 ≤ m ≤ 2n, the maximally m-induced

subgraph V max
m (GQn) of GQn contains at most g(m) edges by induction.
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Lemma 2 Given a generalized hypercube GQn for n ≥ 3, and an integer m for 0 ≤ m ≤ 2n.

We have that maxm(GQn) ≤ g(m).

Proof. This lemma is proved by induction. For the induction base n = 3, it is not hard to

check that maxm(GQ3) ≤ g(m) for 0 ≤ m ≤ 8 by brute force. Assume that maxm(GQn) ≤

g(m) for 0 ≤ m ≤ 2n. Now, we shall show that for the m-induced subgraph of the GQn+1,

maxm(GQn+1) ≤ g(m) for 0 ≤ m ≤ 2n+1. In the m-induced subgraph with m vertices of

GQn+1, we may assume that there are m0 vertices in GQ0
n and m1 in GQ1

n with m = m0 + m1.

Without loss of generality, we may assume that m0 ≥ m1 ≥ 0. We divide the proof into the

following two cases.

Case 1: m1 = 0. So the m vertices are all distributed in GQ0
n and m ≤ 2n. By the induction

hypothesis, we have that maxm(GQn+1) ≤ g(m).

Case 2: m1 > 0. For the maximally m-induced subgraph of GQn+1, there are m0 > 0 vertices

in GQ0
n and m1 in GQ1

n. Hence, maxm(GQn+1) ≤ maxm0(GQ0
n)+maxm1(GQ1

n)+min{m0,m1}.

By the induction hypothesis, maxm0(GQ0
n) ≤ g(m0) and maxm1(GQ1

n) ≤ g(m1). In addition,

g(m0) + g(m1) + min{m0,m1} ≤ g(m0 + m1) by Lemma 1. As a result, we have the following

equation and this lemma is proved.

maxm(GQn+1) ≤ maxm0(GQ0
n) + maxm1(GQ1

n)

+ min{m0,m1}
≤ g(m0) + g(m1) + min{m0,m1}
≤ g(m0 + m1)

= g(m). ¦
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Now, we give an algorithm to find an m-induced subgraph of GQn with g(m) edges.

Algorithm

01. V ′ := BUILD VERTEX SET(n,m);

/* Give an n-dimensional generalized GQn for n ≥ 3, and an integer m, where 0 ≤ m ≤ 2n.

Let m =
∑r−1

i=0 2li , where l0 > l1 > · · · > 0lr−1 ≥ 0. */

02. BUILD VERTEX SET(n, m)

03. begin

04. V ′ := ∅; /* V ′ is a vertex subset of GQn. */

05. if (m = 0) then return V ′ := ∅;

06. if (m = 2n) then return V ′ := V (GQn);

07. for i := 0 to r − 1

08. V ′ := V ′ ∪ {1n−(li+1)0vli−1 · · · v1v0|vx ∈ {0, 1} for 0 ≤ x ≤ li − 1};

09. return V ′; /* GQn[V ′] is the maximally m-induced subgraph of GQn */

10. end BUILD VERTEX SET

Take one situation of GQ3 as Figure 3 for example, while m = 7, V ′ = {000, 001, 010, 011,

100, 101, 110}. Now, we investigate in the number of edges of GQn[V ′] of the above algorithm.

Firstly, if m = 0, by Line 5 of the algorithm, V ′ = ∅ and |E(GQn[V ′])| = 0 = g(0). Secondly,

if m = 2n, by Line 6 of the algorithm, V ′ = V (GQn) and |E(GQn[V ′])| = 2n × n
2

= g(2n).

Finally, we consider that 0 < m < 2n. Let m =
∑r−1

i=0 2li , where l0 > l1 > · · · > lr−1 ≥ 0. After

6



Table 1: Total number of edges of GQn[V ′] with 0 < m < 2n.

for loop |E(GQn[V ′])|
i = 0 |E(GQl0)|
i = 1 |E(GQl0)| + (|E(GQl1)|+ 2l1)

i = 2 |E(GQl0)| + (|E(GQl1)|+ 2l1)
+ (|E(GQl2)|+ 2× 2l2)

i = 3 |E(GQl0)| + (|E(GQl1)|+ 2l1)
+ (|E(GQl2)|+ 2× 2l2)
+ (|E(GQl3)|+ 3× 2l3)

· · · · · ·
i = r − 1 |E(GQl0)| + (|E(GQl1)|+ 2l1)

+ (|E(GQl2)|+ 2× 2l2)
+ (|E(GQl3)|+ 3× 2l3)
+ · · ·
+ (|E(GQlr−1)|+ (r − 1)× 2lr−1)
= 2l0 × l0

2 + (2l1 × l1
2 + 2l1)

+ (2l2 × l2
2 + 2× 2l2)

+ (2l3 × l3
2 + 3× 2l3)

+ · · ·
+ (2lr−1 × lr−1

2 + (r − 1)× 2lr−1)
= g(m)

finishing the for loop of the algorithm (lines 7-8), Table 1 is established, and the total number

of edges of GQn[V ′] is g(m). Therefore, Lemma 3 follows.

GQ
3

010
011

000
001

110
111

100
101

0v
1
v

0

10v
0

110

Figure 3: Maximally m-induced subgraph of the generalized hypercube GQ3 with m = 7.

Lemma 3 Given a generalized hypercube GQn for n ≥ 3, and an integer m for 0 ≤ m ≤ 2n.

We have that maxm(GQn) ≥ g(m).
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According to Lemma 2 and Lemma 3, the main result of this paper is stated as Theorem 1.

Theorem 1 Given a generalized hypercube GQn for n ≥ 3, and an integer m for 0 ≤ m ≤ 2n.

We have that maxm(GQn) = g(m).

By the construction scheme of generalized hypercubes, the hypercubes, crossed cubes ,

twisted cubes, and möbius cubes are special cases of generalized hypercubes. As a result, we

have the following corollary.

Corollary 1 maxm(Qn) = maxm(CQn) = maxm(TQn) = maxm(MQn) = g(m) for n ≥ 3 and

0 ≤ m ≤ 2n.

4 Conclusion Remarks

The n-dimensional generalized hypercube GQn is a promising candidate for interconnection

networks. Additionally, the crossed cubes CQn, twisted cubes TQn, and möbius cubes MQn

are special cases of the GQn. This research determined the maximum number of edges of a

subgraph of the GQn induced by a given number of m vertices with 0 ≤ m ≤ 2n. We also give

an algorithm to find the maximally m-induced subgraph V max
m (GQn) of generalized hypercubes.
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