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Maximum induced subgraph of the generalized hypercube graphs

Y-Chuang Chen
Department of Information Management

Ming Hsin University of Science and Technology

Abstract

The topological structure of an interconnection network can be modeled by a graph
G = (V, E) where V is the vertex set and E the edge set of G. For a vertex subset V' of
graph G, the subgraph of G induced by V', denoted by G[V"], is a graph with vertex set
V" and all the edges of G with both ends of vertices in V. An m-induced subgraph of a

graph is such one which induced by m vertices. A maximum m-induced subgraph of a

graph G, denoted by V™(G), can be defined as ¥, (G)=1{G| | max | G|}

SALE

Let max,,(G) be the number of edges in such a maximum m-induced subgraph V™ (G)

Maximum m-induced subgraph of graph G has applications in the evaluation of fault

tolerance and bandwidth of networks. Let m be an integer with m:zl:;f" and

I, >0 >>1_ .g(m)= Zf;( Sy i)2".For an n-dimensional hypercube Q,, it is
=2

proved by Abdel-Ghaffar in 2003 that max,,(Q,) = g(m) for n >1 and 0 < m < 2". After
that, maximum m-induced subgraph of the recursive circulant graphs has proposed by
X. Yang et al. in 2005. We recursively define generalized hypercubes, denoted by GQ,,
for n > 0. All of hypercubes, twisted cubes, crossed cubes, and mobius cubes are special
cases of generalized hypercubes. In this paper, we prove that max,(GQ,) = g(m) for n >
3 and 0 < m < 2". We also provide an algorithm to find the maximum m-induced

subgraph of generalized hypercubes.

Keywords: maximum m-induced subgraph, hypercubes, twisted cubes, crossed cubes,

mobius cubes, generalized hypercubes.
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1 Introduction

The topological structure of an interconnection network can be modeled by a graph, while
vertices represent processors and edges represent links between processors. For the purpose
of connecting hundreds or thousands of processing elements, many interconnection network
topologies have been proposed in literature. Graph theory can be used to analyze the networks
and most of the graph definitions we use are standard [4]. Terms networks and graphs are used
interchangeably in this paper.

Given a graph G = (V| E) where V is the vertex set and E the edge set of G. For a vertex
subset V' of graph G, the subgraph of G induced by V', denoted by G[V'], is a graph with
vertex set V'’ and all the edges of G with both ends of vertices in V’. An m-induced subgraph
of a graph is such one which induced by m vertices [16]. A mazimally m-induced subgraph of a

graph G, denoted by V(@) can be defined as

V() ={GV ||, max_ EGVI)

Let max,,(G) be the number of edges in such a maximally m-induced subgraph V»**(G).
The n-dimensional hypercube [3], denoted by @, is an undirected graph with 2" vertices, which
consists of all n-bit binary strings as its vertices. Take (03 for an instance, let V] be the vertex set
{000,001,011, 111}, then E(Qs[V4]) = {(000,001),(001,011),(011,111)}. However, let V; be
the vertex set {000, 001,011,010}, then E(Qs[V5]) = {(000,001), (001,011), (011,010), (010, 000)}.
Actually, max4(Q3) = 4. To maximize the number of edges joining vertices of a vertex set with

m vertices of a graph is an important issue in this research.



Let m = Zf;& 2l where [y > l; > -+ > l,_1 > 0. For an n-dimensional hypercube
@y, it is proved in [1] that max,,(Q,) = Yi-3(% + i)2%. For the recursive circulant graphs
RC(2",4), the value of max,,(RC(2",4)) is proved in [16]. The results of maximally m-induced
subgraph have applications in the evaluation of fault tolerance and bandwidth of networks.
Maximizing the number of transitions corresponding to single edges may decrease the power
consumption because of switching activities in processors [14]. In addition, they also relate to
electromechanical or optical sensors [16]. The same technique also can be used to facilitate
browsing of documents in libraries and data storage systems [12]. Some other applications can
be seen in [1].

The n-dimensional hypercube, denoted by @, is a popular network because of its attrac-
tive properties, including regularity, symmetry, small diameter, strong connectivity, recursive
construction, partitionability, and relatively low link complexity [3, 11, 13]. There are some vari-
ations of the hypercube @,, appearing in literature, such as twisted cubes [2, 10], crossed cubes
[9, 15], and mdbius cubes [8, 15]. These variations preserve most of the good topological prop-
erties of the hypercube, and even better. For example, the diameter of these variation cubes is
around half of that of the hypercube. Recently, the twisted cubes, crossed cubes, and mobius
cubes are proved to be super connected and super fault-tolerant hamiltonian graphs [5, 7]. We
define a generalization of those graphs. The n-dimensional generalized hypercubes, denoted by
GQ,, are generalizations of the the n-dimensional twisted cubes T'Q),,, crossed cubes C'Q),,, and
mobius cubes M@Q,,. Let r and [y > [y > --- > [,_; be nonnegative integers with m = Zf;& 2l

In this paper, we show that max,,(GQ,) = >/ (4 +1)2" for n > 3 and 0 < m < 2". Moreover,



we provide an algorithm to find the maximally m-induced subgraph V"**(GQ),,) of graph GQ,,
forn >3 and 0 <m <27,

The rest of this paper is organized as follows. Section 2 starts with the definition of gener-
alized hypercubes and defines the function g(m). Section 3 forms the main result of the paper.

In Section 4, we give the conclusion remarks.

2 Preliminary

Motivated by the recursively structure of the hypercubes, crossed cubes, twisted cubes, and
mobius cubes, we have the following n-dimensional generalized hypercubes, denoted by G@,,.
The GQ,, for n > 0 is recursively defined as follows. For n = 0, GQ)y is a vertex. Forn =1, GQ,
is isomorphic to the 1-dimensional hypercube @); with vertex set {0,1} and edge set {(0,1)}.
As for n > 2, GQ,, consists of (1) two not necessarily identical GQ,,_;’s, denoted by GQ® | and
GQ! _|; and (2) an arbitrary perfect matching with 2"~ edges between the two GQ,,_;’s, each
vertex in GQY_; is adjacent to exactly one vertex in GQ._;. The n-dimensional generalized
hypercubes G@Q,, for n = 1,2 are shown in Figure 1, in which the edge set of GQ)5 has two

different situations. Figure 2 illustrates labels of the vertex set of GQ,,.

! ) ! Lo |
| | | {
*—o | m L IN,
0 1 ' 01 11 | ) 01@ 1 @11
G | S e I N N
“ Gol Gol  Go] Go
GQ, GO,

(a) GO, (b) GO,

Figure 1: (a) GQ1; (b) Two situations of GQs.
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Figure 2: Labels of the vertex set of GQ,.

Now, the Function g(m) is defined as the following. Let m be an integer with m = Y- 2
and lp > l; > -+ > l,_1. Then, g(m) = :;01(15 + )2k, As an example, for n = 86 =

26 1 24 4224 21 (86) = (6/2 + 0)26 + (4/2 + 1)2* + (2/2 + 2)2% + (1/2 + 3)2! = 259.

3 Maximally m-induced Subgraph of Generalized Hy-
percubes

In this section, we state and show the main result that given a generalized hypercube G@),, for

n > 3 and an integer m for 0 < m < 2", we have that max,,(GQ,) = g(m). In order to prove

it, the following lemma is needed.
Lemma 1 [16] For any nonnegative integers mg,my, g(mo+ms) > g(mo)-+g(my)+min{mg, m; }.

The following lemma shows that for n > 3 and 0 < m < 2", the maximally m-induced

subgraph V"*(GQ,,) of GQ,, contains at most g(m) edges by induction.

4



Lemma 2 Given a generalized hypercube GQ,, for n > 3, and an integer m for 0 < m < 2",

We have that max,,(GQ,) < g(m).

Proof. This lemma is proved by induction. For the induction base n = 3, it is not hard to
check that max,,(GQ3) < g(m) for 0 < m < 8 by brute force. Assume that max,,(GQ,) <
g(m) for 0 < m < 2". Now, we shall show that for the m-induced subgraph of the GQ,1,
max,,(GQn.1) < g(m) for 0 < m < 2", In the m-induced subgraph with m vertices of
GQ,.+1, we may assume that there are my vertices in GQ® and m; in GQ! with m = mgy + m;.
Without loss of generality, we may assume that mg > m; > 0. We divide the proof into the
following two cases.

Case 1: m; = 0. So the m vertices are all distributed in GQ% and m < 2". By the induction
hypothesis, we have that max,,(GQ,+1) < g(m).

Case 2: m; > 0. For the maximally m-induced subgraph of GQ,,11, there are my > 0 vertices
in GQY and m; in GQL. Hence, max,,(GQ,1) < max,,,(GQ°)+ max,,, (GQL)+ min{mgy, m;}.
By the induction hypothesis, max,,,(GQ%) < g(mg) and max,,, (GQL) < g(m;). In addition,
g(mo) + g(my) + min{mgy, m1} < g(mo + my) by Lemma 1. As a result, we have the following

equation and this lemma is proved.

IN

max,,(GQni1) max,,, (GQY) + max,,, (GQL)
+ min{mg, my }

9(mo) + g(ma) + min{mo, m1 }
g(mo +my)

g(m). o

IA A



Now, we give an algorithm to find an m-induced subgraph of GQ,, with g(m) edges.

Algorithm
01. V' := BUILD_VERTEX_SET(n,m);
/* Give an n-dimensional generalized GQ),, for n > 3, and an integer m, where 0 < m < 2".
Let m = Y02y 2%, where lop > 1} > -+ > 0l,_, > 0. */
02. BUILD_VERTEX_SET(n, m)
03. begin
04. V':i=0; /*V'is a vertex subset of GQ,,. */
05.  if (m = 0) then return V' := {);
06. if (m = 2") then return V' := V(GQ,);
07. fori:=0tor—1
08. V=V U {10y, - oglu, € {0,1) for 0 < 2 < — 1}
09. return V'; /* GQ,[V’] is the maximally m-induced subgraph of GQ,, */

10. end BUILD_VERTEX_SET

Take one situation of GQ3 as Figure 3 for example, while m = 7, V/ = {000, 001, 010, 011,
100, 101, 110}. Now, we investigate in the number of edges of GQ,[V'] of the above algorithm.
Firstly, if m = 0, by Line 5 of the algorithm, V' = () and |E(GQ,[V'])] = 0 = ¢(0). Secondly,
if m = 2", by Line 6 of the algorithm, V' = V(GQ,) and |E(GQ,[V'])| = 2" x § = g(2").

Finally, we consider that 0 < m < 2". Let m = Z;:& 2l where Iy > 1y > --- > [,_1 > 0. After



Table 1: Total number of edges of GQ,[V'] with 0 < m < 2".

for loop | |[E(GQ,[V'])]
i=0 [E(GQy)|
i=1 |E(GQi,)| + (|B(GQy,)| +2")
i=2 |E(GQuy)| + (IE(GQ,)| +2M)
+ (IE(GQu,)| +2 x 21)
i=3 |E(GQuy)| + (IE(GQ,)| +2M)
+ (IE(GQu,)| +2 x 2)
+ (IE(GQu)| +3 x 2)
i=r—1 !E(GQZO)\ + (|B(GQ)| +2M)

+ (|B(GQu,)| +2 % 22)
+ (|B(GQuy)| + 3 % 2)

+

+ (|B(GQu,_ )| + (r — 1) x 2—1)
=2l x Lo 4 (2h x U4 4 oh)

+ (22 x 2 + 2 x 2k)

+ (2 x B8 43 x 2B)

N

(2t x Bl (- 1) x 20)
= g(m)

finishing the for loop of the algorithm (lines 7-8), Table 1 is established, and the total number

of edges of GQ,[V'] is g(m). Therefore, Lemma 3 follows.

Figure 3: Maximally m-induced subgraph of the generalized hypercube GQ3 with m = 7.

Lemma 3 Given a generalized hypercube GQ,, for n > 3, and an integer m for 0 < m < 2",

We have that max,,,(GQ,,) > g(m).



According to Lemma 2 and Lemma 3, the main result of this paper is stated as Theorem 1.

Theorem 1 Given a generalized hypercube GQ),, for n > 3, and an integer m for 0 < m < 2™.

We have that max,,(GQ,) = g(m).

By the construction scheme of generalized hypercubes, the hypercubes, crossed cubes |,
twisted cubes, and mobius cubes are special cases of generalized hypercubes. As a result, we

have the following corollary.

Corollary 1 max,,(Q,) = max,,(CQ,) = max,,(TQ,) = max,,(MQ,) = g(m) forn >3 and

0<m< 2™

4 Conclusion Remarks

The n-dimensional generalized hypercube G(@),, is a promising candidate for interconnection
networks. Additionally, the crossed cubes CQ,, twisted cubes T'Q),,, and mobius cubes M@,
are special cases of the G@Q),,. This research determined the maximum number of edges of a
subgraph of the G@Q),, induced by a given number of m vertices with 0 < m < 2". We also give

an algorithm to find the maximally m-induced subgraph V***(G@),,) of generalized hypercubes.
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